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ABSTRACT
Detecting how a vehicle is steered and then alarming drivers
in real time is of utmost importance to the vehicle and the
driver’s safety, since fatal accidents are often caused by dan-
gerous steering. Existing solutions for detecting dangerous
maneuvers are implemented either in only high-end vehicles
or on smartphones as mobile applications. However, most of
them rely on the use of cameras, the performance of which
is seriously constrained by their high visibility requirement.
Moreover, such an over/sole-reliance on the use of cameras
can be a distraction to the driver.

To alleviate these problems, we develop a vehicle steer-
ing detection middleware called V-Sense which can run on
commodity smartphones without additional sensors or in-
frastructure support. Instead of using cameras, the core of
V-Sense senses a vehicle’s steering by only utilizing non-
vision sensors on the smartphone. We design and evaluate
algorithms for detecting and di↵erentiating various vehicle
maneuvers, including lane-changes, turns, and driving on
curvy roads. Since V-Sense does not rely on use of cam-
eras, its detection of vehicle steering is not a↵ected by the
(in)visibility of road objects or other vehicles. We first de-
tail the design, implementation and evaluation of V-Sense
and then demonstrate its practicality with two prevalent use
cases: camera-free steering detection and fine-grained lane
guidance. Our extensive evaluation results show that V-

Sense is accurate in determining and di↵erentiating various
steering maneuvers, and is thus useful for a wide range of
safety-assistance applications without additional sensors or
infrastructure.

1. INTRODUCTION
Automobiles bring a wide range of conveniences as well

as fatalities. In 2012, the reported number of fatalities from
road accidents was 30,800 in the U.S. alone [4]. Of these
fatalities, 23.1% involved lane control — i.e., merging or
changing lanes or driving on curvy roads — and 7.7% in-
volved turning maneuvers, i.e., turning left/right or making
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Figure 1: Visibility distortion under di↵erent conditions

U-turns. In total, 30.8% of the fatalities were related to
vehicle steering maneuvers.1

As most of these fatalities had resulted from the driver’s
careless or erroneous steering, those accidents could have
been minimized or prevented if e↵ective safety mechanisms
had been deployed in the vehicles. There has been an on-
going push for incorporating electronic safety features in the
vehicles to assist drivers’ steering.

Steering-assistance systems, such as lane-departure warn-
ing or lane-keeping assistance, are the typical examples. They
all exploit the advanced built-in sensors (e.g., cameras, radars,
and infrared sensors) to detect the lane for driving assis-
tance [13]. However, since they require special sensors which
are only available on recent high-end cars, such safety solu-
tions cannot be applied to a wide range of type/year models
of cars.

To overcome such limitations, instead of using built-in ve-
hicle sensors, e↵orts are being made to exploit the sensors
in smartphones to assist drivers in their steering maneuvers.
At one end of the spectrum of such applications, cameras
have been used widely. The front/rear cameras of a smart-
phone are exploited to capture the images of road objects
(e.g., tra�c lanes, curb, and the preceding vehicle) which are
then analyzed with image processing [8, 20, 29]. Although

1We refer to steering maneuvers as either changing lanes,
turning left/right, or driving on curvy roads.



such systems claim that smartphone cameras are su�cient
in assisting the driver, they have limitations in terms of
computational overhead and inaccuracy. The accuracy of
camera-based approaches depends on visibility and can thus
be infeasible, depending on the conditions listed below and
shown in Fig. 1.

• Lighting: The functionality of camera-based approaches
cannot be guaranteed in case of insu�cient light, es-
pecially at night time.

• Weather: Rainy or snowy weather will make roads
waterly or icy, and will thus distort the light reflection,
rendering it di�cult to identify road objects.

• Pavement: Bad pavement conditions will distort the
shape of road objects and will thus cause false or miss
detections.

• Camera placement: Placing the phone at a loca-
tion where the camera cannot capture the road objects
(e.g., in the driver’s pocket), will diminish the feasibil-
ity of the camera-based approach.

The other end of the spectrum is to not use cameras.
Smartphone sensors, such as gyroscope, accelerometer, mag-
netometer, etc., can be exploited to detect the vehicle steer-
ing maneuvers and thus perform the same steering-assistance
functionalities that would have been achieved with use of
cameras [25, 28]. These approaches have advantages of re-
quiring much less computational resources and power, and
also being immune to visibility distortions. However, it is
known to be very di�cult to di↵erentiate the steering ma-
neuvers, which is one of the main reasons for camera-based
approaches being most prevalent.

In this paper, we propose V-Sense, a novel vehicle steering
sensing middleware on smartphones, which overcomes the
limitations and di�culties inherent in the existing camera-
based and camera-free approaches. V-Sense is a camera-free
middleware that can be utilized for various applications.
It utilizes built-in Inertial Measurement Units (IMUs) on
smartphones to detect various steering maneuvers of a vehi-
cle. Specifically, V-Sense determines the changes in the an-
gle of vehicle heading (i.e., steering) and the corresponding
displacement during a steering maneuver. V-Sense classifies
steering maneuvers into di↵erent types, such as turn, lane
change, driving on curvy roads, etc., and exploits the clas-
sified results for various applications. We will elaborate on
these applications in the following sections.
The contributions of this paper are three-fold:

• Design of V-Sense, an all-time vehicle steering sensing
middleware which does not rely on use of cameras;

• Detection and di↵erentiation of various steering ma-
neuvers by only utilizing a smartphone’s built-in sen-
sors; and

• Proposal of two driving-assistance applications — i.e.,
careless steering detection and fine-grained lane guid-
ance — which are based on V-Sense functionalities.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the motivation behind the design of V-Sense.
Section 3 details the overall system and functionalities of V-
Sense. We first evaluate the performance of V-Sense in Sec-
tion 4 and then show two di↵erent applications of V-Sense

in Sections 5 and 6. After reviewing the related work in
Section 7, we finally conclude the paper in Section 8.

2. MOTIVATION
Without relying on use of cameras and by only utilizing

non-vision sensors on commodity smartphones, V-Sense can
detect various steering maneuvers, such as left/right turns,
changing lanes, or driving on curvy roads. How could such
functionalities of V-Sense without using cameras at all, as-
sist the driver in terms of both convenience and safety?
Can it actually help in reducing fatalities from road acci-
dents? Given below are two proof-of-concept applications of
V-Sense that enhance safety and convenience of the driver’s
steering.

Careless steering detection.

Careless steering — changing lanes or making turns with-
out using the turn signal on the car — is one of the main
reasons for steering-related fatalities. A study from the Soci-
ety of Automotive Engineers (SAE) unveiled that people in
the U.S. forget to use their turn signals 2 billion times each
day in total, or roughly 750 billion times per year. Based
on such figures, SAE argued that about 2 millions of acci-
dents can be prevented by eliminating turn signal neglects
or careless steering [27]. In this application, V-Sense pro-
vides the functionalities required for detecting such careless
maneuver. By combining lane-change detection via V-Sense

and turn signal sound detection — which is designed based
on a matched filter — the application determines whether
the steering maneuver was accompanied with a turn signal,
i.e., detecting whether the steering was careless or not.

Fine-grained lane guidance.

Existing navigation applications (e.g., Google map) pro-
vide information on which lane to stay on for preparing the
next maneuver, i.e., indicating the correct lane. However,
they lack functionalities of telling whether the vehicle is ac-
tually on that lane. If the driver fails to stay on the correct
lane before its next maneuver, s/he would have to reroute
or, in the worst case, take abrupt and thus dangerous lane
changes to that lane. In order to provide assist the driver
to determine whether the vehicle is on the correct lane, V-
Sense provides the functionalities for fine-grained lane guid-
ance. By integrating V-Sense and existing navigation sys-
tems, one can determine which lane the driver is currently
on, and whether the lane is correct or not, without using
cameras.

3. SYSTEM DESIGN
This section details the design and functionalities of V-

Sense. First, we describe how IMUs on smartphones are
utilized to determine whether the vehicle is making turn,
changing lane, or driving on a curvy road. Then, we show
how V-Sense classifies such di↵erent vehicle steering maneu-
vers based on the detection results.

3.1 Coordinate Alignment
Since the phone’s coordinate changes over time, in order

to maintain the consistency of analysis, we align the smart-
phone coordinate ({Xp, Yp, Zp}) with the geo-frame coor-
dinate ({Xe, Ye, Ze}), as shown in Fig. 2. This allows us
to simplify the change of the readings from 3 degrees of
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Figure 3: Gyroscope readings when the vehicle makes a left/right turn or left/right lane changing.
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Figure 2: Align the phone coordinate system with the geo-
frame coordinate system. This figure was borrowed from
[30].

freedom (DoFs) to 1 DoF. The key idea is that with the
measurements of the direction of the applied gravity to the
smartphone (Y ), the smartphone coordinate can be fixed
within a cone. Then, combining the result with the angle
(✓) derived from the magnetometer readings and the thus-
determined rotation matrix, the smartphone coordinate can
be aligned with the geo-frame coordinate. We refer inter-
ested readers to [30] for detailed formulation of the rotation
matrix.

3.2 Bump Detection
When a car changes its direction via steering (e.g., chang-

ing lanes, making turns, and driving on curvy roads), the Z-
axis gyroscope reading (i.e., yaw rate reading) on the phone
can be utilized to represent the vehicle angular speed of
that change of direction. Fig. 3 illustrates the Z-axis gy-
roscope measurements from the phone during a right/left
turn, and changing to a right/left lane, respectively. During
a left turn, a counter-clockwise rotation around the Z-axis
occurs and thus generates positive readings (i.e., a positive
bump), whereas during a right turn, a clockwise rotation
occurs and thus generates negative readings (i.e., a nega-
tive bump).2 Similarly, during a left lane change, a positive
bump is followed by a negative bump, whereas during a right
lane change, the opposite occurs.

Based on this observation, we can infer that by detecting
bumps in the Z-axis gyroscope readings, we can determine
whether the vehicle has made a turn or has changed a lane.
The other steering maneuver, i.e., driving on a curvy road,
will show a similar shape but with a di↵erent size in terms of
2We refer to such a temporal rise/drop, or vice versa, of the
yaw rate as bumps.
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Figure 4: Statistical features of bumps in gyroscope reading
during di↵erent steering maneuvers

width and height of the bumps. We will elaborate on how V-

Sense di↵erentiates such steering maneuvers in Section 3.3.
We adopt a moving average filter to remove noise from

the raw gyroscope readings. The delay parameter of the
filter is set to 60 samples which correspond to 0.05 second
in the time domain. Such a decision was made based on
our experimental observation: it is short but good enough
to extract the waveform of the bumps.

As shown in Fig. 4, we define four system parameters:
�s, �h, TBUMP , and TNEXT DELAY . To reduce false posi-
tives and di↵erentiate the bumps from jitters, a bump should
satisfy the following three constraints for its validity: (1) all
the readings during a bump should be larger than �s, (2)
the largest value of a bump should be no less than �h, and
(3) the duration of a bump should be no less than TBUMP .



Algorithm 1 Algorithm for Detecting Bumps

1: Inputs:

State, Y (Yaw rate), System parameters
2: if State = No-Bump and |Y | > �s then

3: (Start of 1st bump)
4: State  One-Bump
5: Record the start point of a possible bump
6: else if State = One-Bump and |Y | < �s then

7: Record the end point of a possible bump
8: if bump is valid then

9: State  Waiting-for-Bump
10: else

11: State  No-Bump
12: end if

13: else if State = Waiting-for-Bump then

14: Tdwell  State dwell duration
15: if Tdwell < TNEXT DELAY and |Y | > �s then

16: (Start of 2nd bump)
17: if 2nd bump is valid then

18: Two valid bumps ! “Lane change”

19: else

20: One valid bump ! “Turn”

21: end if

22: State  No-Bump
23: else if Tdwell > TNEXT DELAY then

24: One valid bump ! Turn
25: State  No-Bump
26: else

27: Continue in Waiting-for-Bump state
28: end if

29: else

30: Continue in current state
31: end if

Based on these constraints of a valid bump, we designed
an algorithm as shown in Algorithm 1, which keeps running
when V-Sense operates. There are three states in the bump
detection algorithm: No-Bump, One-Bump, and Waiting-
for-Bump.

In No-Bump state, we continuously monitor the Z-axis
gyroscope readings, i.e., yaw rate. When the absolute value
of the measured yaw rate reaches �s, we interpret this as the
start of a possible bump and the algorithm enters One-Bump
state.

The One-Bump state terminates when the yaw rate drops
back to a value below �s. If the sojourn/dwell time in One-
Bump state was larger than TBUMP and the largest mea-
sured yaw rate was larger than �h, hence satisfying the three
constraints, we consider the first detected bump to be valid.
In such a case, the algorithm entersWaiting-for-Bump state,
Otherwise, it returns to No-Bump.

In Waiting-for-Bump state, it further monitors the yaw
rate readings for a maximum dwell time TNEXT DELAY . In
the meanwhile, if another bump starts, i.e., the yaw rate
reaching �s with a sign opposite to the first bump’s is de-
tected, it goes through the same procedure as before in val-
idating it. If determined as valid, this would mean that two
consecutive bumps with opposite signs have been detected.
Thus, the algorithm determines the maneuver to be a lane
change. Otherwise, if the second bump turns out to be in-
valid, then it would mean that only a single valid bump was
detected and thus the algorithm determines the maneuver

to be a turn. After making all decisions, the algorithm goes
back to the initial No-Bump state.

The bump-detection algorithm is executed iteratively for
each collected sample, and goes through a di↵erent proce-
dure depending on the current state.

3.3 Differentiating Steering Maneuvers
When the vehicle is steered, bumps in the yaw rate read-

ings are constructed. Based on the bump detection algo-
rithm, V-Sense detects such bumps and di↵erentiates be-
tween maneuvers of a lane change and a turn.

One possible problem in using this would be when driving
on a curvy road. As illustrated in Fig. 5, when driving on a
curvy road, it might have the same shape of trajectory as in
lane change or a turn, and hence construct the same number
and shape of bumps. In such a case, V-Sense might misin-
terpret the drive on a curvy road as a lane change or turn,
thus yielding false positives/negatives. Therefore, it is im-
perative for V-Sense to di↵erentiate between lane changes,
turns, and also driving on curvy roads.

We achieve this by classifying the maneuvers based on
not only the number and shape of the bumps as in Al-
gorithm 1, but also with their horizontal displacement.3

Let WLANE denote the horizontal displacement after a lane
change. Since the average lane width is around 3.65 me-
ters [14], WLANE is expected to be around that value after
a lane change. In contrast, while driving on a curvy road,
the horizontal displacement, denoted as WCURV Y , is usu-
ally much larger than WLANE . Based on this observation, if
V-Sense has detected two bumps — which means a possible
lane change — it then derives the horizontal displacement
during that steering maneuver. If the derived value is larger
than 3.65 meters, V-Sense determines the vehicle to be driv-
ing on a curvy road, rather than making a lane change.

Also, to di↵erentiate between turns at the intersection
(i.e., a sharp turn) and driving on a curvy road, we ex-
ploit the fact that the horizontal displacement during a turn
is much smaller than that during driving on a curvy road.
Figs. 5(c) and 5(d) illustrate this, whereWTURN andWCURV Y

represent the horizontal displacements during a turn and
driving on a curvy road, respectively. If V-Sense detects
only one bump, it further examines the horizontal displace-
ment to distinguish between turning and driving on a curvy
road.

Note that to di↵erentiate turns from lane changes, only
the number and shape of the bumps are required, which can
be met by the bump-detection algorithm.

3.4 Horizontal Displacement
In order to correctly distinguish between lane change, turn,

and driving on a curvy road, we must determine the hori-
zontal displacement, in addition to the detection of bumps.
We derive the horizontal displacement from the readings of
a smartphone’s gyroscope and accelerometer.

Fig. 6 shows an example vehicle trajectory during a left
lane change or maneuver on a curvy road as illustrated in
Figs. 5(a) and 5(b). The dotted vertical line represents the
time when the sensors are sampled with frequency of 1/Ts.
Here ✓n denotes the angle of the vehicle’s heading, whereas
vn represents the average velocity during the sampling pe-

3Horizontal displacement is a value that represents the
change of position in the X-axis after the steering maneuver.



(a) Lane change (b) A S-shaped curvy road (c) Turning (d) A L-shaped curvy road

Figure 5: The same vehicle trajectory shape for four di↵erent scenarios: (a) lane change, (b) driving on an S-shaped curvy
road, (c) turning, and (d) driving on an L-shaped curvy road.

W4�

W3�

W2�
W1�

0�Ts�2Ts�3Ts�4Ts� Time�

Velocity� v1�v2�v3�v4�

θ1�

θ2�
θ3�

θ4�

Figure 6: Deriving the horizontal displacement based on
gyroscope readings and estimated velocity

riod. During each sampling period Ts, the vehicle’s horizon-
tal displacement can be expressed as:

Wn = vnTssin(✓n). (1)

Since the yaw-rate readings from the gyroscope represent
the vehicle’s angular velocity around the Z-axis, ✓n can be
expressed as:

✓n = ✓n�1 + YavgTs

⇡ ✓n�1 + YnTs, (2)

where Yavg represents the average yaw rate during the sam-
pling period, and Yn the instantaneous yaw rate measured
at the end of the sampling period. Note that the above ap-
proximation holds since the sampling period on smartphones
can be significantly reduced. Thus, the total horizontal dis-
placement from time 0 to NTs can be derived as:

Wfinal =
NX

n=1

Wn

=
NX

n=1

vnTssin(✓n)

=
NX

n=1

vnTssin(
nX

k=1

YkTs)

(3)

where Ts is a predefined parameter denoting the sampling
period of the application. The third equality comes from the
fact that the initial angle of the vehicle’s heading, ✓0 = 0,
since this is the reference point. Yk can be acquired from
the gyroscope readings, while vn can be derived from the
accelerometer and GPS readings. We further elaborate on
how to obtain an accurate value of vn in Section 3.6.

We exploit the gyroscope and accelerometer readings to
determine Wfinal. Then, by analyzing the thus-determined
value, V-Sense distinguishes between the cases of lane change
or turn and driving on curvy roads. Using in-depth evalu-
ations, we will later show that the derivation of horizontal
displacement is accurate for various cases (e.g., lane change,
left/right turn, U-turn).

3.5 Change in Vehicle’s Heading Angle
Based on bump detection and horizontal displacement, V-

Sense classifies various steering maneuvers into three classes:
lane change, turn, and driving on a curvy road. To further
classify di↵erent turning maneuvers (e.g., left/right turn at
the intersections, U-turn), V-Sense derives the change in the
vehicle’s heading angle, i.e., the di↵erence in the heading
angle between the start and the end of a steering maneuver.

As in Eq. (2), the angle of vehicle’s heading at sampling
time nTs can be derived by accumulating the n yaw-rate
measurements. As an example, consider Fig. 6; at sam-
pling time 3Ts, the angle of the vehicle’s heading would be
✓3 =

P3
n=1 YnTs. In other words, the change in the vehicle’s

heading from time 0 to NTs can be expressed as:

✓final =
NX

n=1

YnTs. (4)

For example, after making a left/right turn at the in-
tersection, ✓final ⇡ ±90�, whereas after making a U-turn,
✓final ⇡ ±180�. Thus, by exploiting the derived values, V-
Sense can further classify the turns into a left/right turn or
a U-turn.

Fig. 7 summarizes the overall maneuver classification in V-

Sense as a state diagram. V-Sense first determines whether
the steering maneuver is a turn or a lane change by calcu-
lating the number of bumps. If it is a turn, V-Sense will
calculate the angle change to determine whether the turn is
a regular left/right turn or a sharp U-turn. Second, V-Sense
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calculates the horizontal displacement to determine whether
it is an curvy road or not.

3.6 Velocity Estimation
In order to derive the horizontal displacement and set

TBUMP and TNEXT DELAY , we need accurate measurement
of the vehicle’s instantaneous velocity.

There are two ways of acquiring the velocity with a smart-
phone: reading the Speed Over Ground (SOG) output from
the GPS module inside the smartphone, or exploiting the
IMU. The GPS does provide measurements of the velocity,
whereas the acceleration can be derived from IMU readings.
However, the GPS output rate is very low, e.g., 1Hz on
Samsung Galaxy S4, as shown in Fig. 8, and hence cannot
properly capture velocity changes within a sampling period.
On the other hand, the IMU has a much higher output rate
but contains lots of noise as well as some biases as shown
in Fig. 8. Thus, just simply using either the velocity mea-
surement from GPS or taking an integral of the accelerator
IMU output is not su�cient. Hence, in order to exploit the
distinct advantages of GPS and IMU, we fuse the data by
using a Kalman filter [19] to estimate the velocity.

We first construct a model for estimating the velocity:

v(k|k� 1) = v(k� 1|k� 1) + (a(k)� b(k� 1|k� 1))Ts (5)

where v(k|k � 1) is the estimated velocity at time k based
on the optimized velocity at time k � 1; v(k � 1|k � 1) is
the optimized velocity at time k�1; a(k) is the acceleration
output at time k; b(k� 1|k� 1) is the optimized bias of the
accelerometer at time k�1; Ts is the sampling period of the
accelerometer.

Here we treat b as a constant bias [22]:

b(k|k � 1) = b(k � 1|k � 1). (6)

Thus, we have a matrix representation of the model as:

X(k|k � 1) = AX(k � 1|k � 1) +BU(k) (7)

where X =


v
b

�
, A =


1 �Ts

0 1

�
, B =


Ts

0

�
, and U is the

output from accelerometer. So, the covariance matrix is
estimated by:

P (k|k � 1) = APAT +Q, Q =


qv 0
0 qa

�
(8)
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Figure 8: The accuracy of velocity estimation by fusing sen-
sor readings

where P is the covariance matrix, and Q is the covariance
of the process noise which can be regarded as the Gaussian
white noise. Thus, the state can be estimated as:

X(k|k) = X(k|k � 1) + g(k)(S(k)�HX(k|k � 1)) (9)

where g(k) is the matrix of Kalman gain and S(k) is the
speed relative to the ground measured by the GPS, and
H = [1 0]. We refer the interested readers to [19] for more
details.

Fig. 8 shows velocity estimation by using such a model
based on Kalman Filter. Here we get the ground truth
velocity by directly reading it from the OBD-II port, and
compare it with our estimation results. Fig. 8 shows that
the velocity can be accurately estimated in real time, thus
yielding accurate horizontal displacements.

3.7 Parameter Setting
The bump-detection algorithm uses four main parame-

ters: �s, �h, TBUMP and TNEXT DELAY . �s determines the
start/end point of a bump and thus is the smallest reading
value, whereas �h determines the largest reading value of the
bump, and hence represents its height. Based on the con-
straints of a valid bump, its minimum and maximum should
be larger than �s and �h, respectively.

With large values of �h and �s, small bumps — which
may be caused by background noise or sensing errors — can
be ignored and thus reduce the false-positive rate, whereas
the false-negative rate might increase. On the other hand,
with small values of �h and �s, the false-negative rate can
be reduced but will become susceptible to background noise,
thus increasing the false-positive rate. From extensive road
tests, we found that parameters of �s = 0.05 and �h = 0.07
represent a good tradeo↵, and are thus used as default values
for simplicity. However, the optimal parameter setting may
slightly vary with the driving habit. Developing an adaptive
parameter selection mechanism is part of our future work.

As for the other two parameters, TBUMP represents the
time duration of a valid bump, whereas TNEXT DELAY rep-
resents the maximum waiting time for the following bump,
in case of a lane change. Since the time duration of a
turn or lane change is usually several seconds [24], we set
TBUMP = 1.5 seconds and TNEXT DELAY = 3 seconds as
their default values.



Lane Change U-turn

#1 #2 #3 Average #1 #2 #3 Average

Displacement [m] 4.29 3.49 3.59 3.79 14.47 15.66 14.46 14.86
Angle Change [deg] 2.03 7.49 4.12 4.54 193.73 179.85 184.41 185.99

Table 1: Determined horizontal displacement and angle change of heading for lane changes/U-turns.
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Figure 9: Error of the determined values compared with the
ground truth.

4. EVALUATION
To evaluate the performance of V-Sense, we implemented

V-Sense on a Samsung Galaxy S4 with a 1.6GHz quad-core
processor running Android 4.4.1 KitKat OS. We have con-
ducted a total of 40 hours of test, and tried to cover dif-
ferent environments both in a parking lot and real roads.
First, we evaluated the accuracy of V-Sense in determining
the change of heading angle and the horizontal displacement
in a short road test. Then, we evaluate the performance of
V-Sense’s classification with a longer road test containing
various road features. The cars we used for the test were a
2010 Mitsubishi Lancer and a 2006 Mazda 6. During these
experiments, the smartphones were either mounted on the
windshield, or kept in the driver’s pocket.

4.1 Accuracy of Estimating Angle Change and
Displacement

By making several lane changes, turns, and U-turns dur-
ing a short road test, we evaluated the accuracy of V-Sense
in estimating the change of heading angle and the horizon-
tal displacement. During the road test, we made three lane
changes, one to the left lane and the other two to the right
lane, and three U-turns. We collected the horizontal dis-
placements and changes of heading angle from V-Sense to
check whether the estimated values are close to their ground
truth. The results of the two separate tests are summarized
in Table 1. For consistency, we present all numbers as their
absolute values.

During a lane change, the ground truth horizontal dis-
placement is expected to be equal to the actual lane width,
which was around 3.7m for our experiment. However, for
the change of heading angle, it is expected to be 0�, since
this is a measure of the di↵erence between the initial and
the final heading angles.

On the other hand, during a U-turn, the ground truth of
horizontal displacement and the change of heading angle are

the road width for U-turns, which was approximately 16m
in our case, and 180�, respectively.

Fig. 9 shows the error ratio — which is the ratio of the
absolute deviation to the ground truth value — in the two
experiments. For all cases, the estimated horizontal dis-
placement and change of heading angle have a very low error
ratio, i.e., V-Sense is very accurate.

The high accuracy of V-Sense in determining the two val-
ues means that it can correctly classify various steering ma-
neuvers, which is validated in the following subsection by
conducting long road tests.

4.2 Accuracy of Maneuver Classification
To evaluate how well V-Sense classifies di↵erent steering

maneuvers, we performed two long road tests. To guaran-
tee the generality of our experiment, we carefully chose two
di↵erent test routes as shown in Figs. 10 (a) and (b) near
our campus. The routes run through typical urban areas
and freeways, the former including residential, downtown,
and school areas. The road features are highlighted in both
figures with detailed information as follows.

• Left/right turn (LT/RT): Each turn at an intersection
exemplifies a left/right turn.

• Curvy road (CR): There are several curvy roads in
the chosen routes. Among them, there are two long
L-shaped curvy roads on the US#23 freeway, which
are challenging for our bump detection scheme alone
to determine.

• Multiple tra�c lanes (LC): A lane change is possible in
both urban areas and on the US#23 freeway. Specifi-
cally, there are 2 lanes in each direction in the urban
road, and 4 lanes in each direction on the US#23 free-
way.

The number of features in the examined routes is summa-
rized in Table 2.

Route Distance [miles] RT LT LC CR

#1 3.4 6 5 4 11
#2 8.3 5 5 15 9

Table 2: Summary of di↵erent road features in testing
routes.

To validate the independence of V-Sense from driving habits,
we had 5 volunteers participating in our test, three male
drivers and two female drivers. Each of them drove twice
on both route #1 and #2. In the first test, they mounted
the phone on the windshield, whereas in the second test, the
phone was kept inside the driver’s pocket.

The on-road experimental results are plotted in Fig. 11,
and can be highlighted as follows.

• V-Sense achieves 100% accuracy in detecting both right
and left turns, regardless of the phone’s placement and



Lane%Change�Right%Turn�Le/%Turn� Curvy%Road�

(a) Testing route #1, around campus, 3.3 miles

Lane%Change�Right%Turn�Le/%Turn� Curvy%Road�

(b) Testing route #2, freeway included, 8.3 miles

Figure 10: Real road testing routes used for evaluation in
Ann Arbor, MI

road condition. This is because when turning, the
heights of the bumps in the readings tend to be high
enough to be accurately detected and classified.

• For lane changes, V-Sense achieves 93% accuracy when
the phone is mounted on the windshield, and 85% ac-
curacy when the phone is in the driver’s pocket. The
false-negative results are mostly due to the fact that V-
Sense occasionally misinterprets a lane change as driv-
ing on a curvy road, because a few of the lane changes
in our test took longer than expected, especially on the
freeway where drivers tend to take extra caution, thus
making slower lane changes. The accumulated error
in the gyroscope reading can also degrade the perfor-
mance in such a case [30]. However, its occurrence
is expected to be rare considering the average elapsed
time for lane changing, i.e., less than 6 seconds.

• V-Sense achieves nearly 97% accuracy in detecting curvy
roads with the phone mounted on the windshield, and
nearly 92% accuracy with the phone kept in the driver’s
pocket. These results also reflect the accuracy of the
coordinate alignment mentioned in Section 3.1. Also,
note that V-Sense was able to detect the two long L-
shaped curvy roads on the US#23 freeway using bump
detection and horizontal displacement derivation.

4.3 V-Sense vs. Camera-Based Approach
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Figure 11: Performance of recognizing di↵erent steering pat-
terns on both route #1 and #2
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Figure 12: Comparison of V-Sense, iOnRoad, BlackSensor,
Drivea, and Augmented Driving in lane-change detection.

We also compare the performance of V-Sense, a camera-
free approach, with existing camera-based approaches. Since
most of the existing driving assistant applications can only
detect lane changes, not turns or driving on curvy roads,
we do this comparison with only the results of lane-change
detection. The evaluation is based on tests of both route
#1 and route #2. We choose iOnRoad [8], BlackSensor [2],
Drivea [3], and Augmented Driving [1] for comparison with
V-Sense. All of these four apps have the capability of de-
tecting lane departures. Of these apps, iOnRoad is the
most popular one with more than 1,000,000 downloads from
Google Play, and it is still under active maintenance, whereas
Drivea is the least popular, still with more than 10,000 down-
loads.

Since the use of cameras is almost 100% ine↵ective at night
or under a bad weather, we compared the performance of V-
Sense with di↵erence apps based on the camera approach,
during daytime and under a perfect weather condition. Here
we used two Samsung Galaxy S4 smartphones: phone A runs
V-Sense while phone B is running either iOnRoad, Black-
Sensor, Drivea, or Augemented Driving. In all experiments,
phone A was placed next to the driver’s seat, while phone
B was mounted on the car’s windshield to have a clear view
of the road.

As shown in Fig. 12, V-Sense achieves about 3⇥ better
accuracy than iOnRoad, 5⇥ better than BlackSensor and
Augmented Driving, and 11⇥ better than Drivea. According
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Figure 13: Non-functional environments for the camera-based driving assistant application in the experiment.
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Figure 14: Comparison of CPU usage between V-Sense and
lane detector

to our experiments conducted even under a perfect weather
condition, the performances of all the compared apps were
still seriously constrained by the environment, while V-Sense
worked well, irrespective of the environment. In particular,
the performance of camera-based lane detection degraded
severely in at least four cases: heavy shadow on the road,
broken road, strong sunlight, and sharp turns as shown in
Fig. 13.

4.4 Computational Cost of V-Sense
The high computational requirement is always the prob-

lem for existing driver assistant applications. For example,
CarSafe [29] indicates its CPU utilization to be 64% when
run on Samsung Galaxy S3. We evaluated the computa-
tional cost of V-Sense on smartphones, including Samsung
Galaxy S3 (with 1.4GHz quad-core Cortex-A9 CPU), and
Samsung Galaxy S4 (with 1.6GHz quad-core Cortex-A15
CPU). The CPU utilization was monitored by using adb

top provided by Android SDK.
For a fair comparison with the camera-based approach,

we extracted the lane change detection functionality and
implemented a simple application only with the lane-change
detection function. The techniques used in this application
exploit the phone’s rear camera to acquire the road’s image,
and implement a popular lane-detection algorithm [17] to
extract the lane.

Our experimental results are plotted in Fig. 14. We found
that, on Galaxy S4, the average CPU utilization of V-Sense
was 16.9%, whereas for the lane detector, it was 28.4%.
On Galaxy S3, the average CPU utilization of V-Sense was
38.1%, whereas for the lane detector, it was 60.6%. These re-
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Figure 15: Information flow of careless steering detection by
combining V-Sense and sound detection module.

sults show that V-Sense uses 50% less CPU than the camera-
based approach. In other words, V-Sense not only achieves
higher accuracy but also lower computational overhead than
camera-based approaches.

5. APPLICATION I: DETECTION OF CARE-
LESS STEERING

V-Sense can be used to detect careless steering: changing
lanes or making turns without turning on the turn signal.
Detecting a driver’s careless steering is important, since it
would enhance the safety of not only the driver but also
people/vehicles around him. Moreover, it can also be used
by insurance companies in monitoring the driver’s driving
habit and thus determining the insurance premium accord-
ingly, which would then motivate the drivers to avoid care-
less steering.

In this section, we present and evaluate a simple proof-of-
concept of careless steering detection. We use V-Sense to
detect and di↵erentiate various steering maneuvers, such as
making turns, changing lanes, and driving on curvy roads.
Furthermore, we present a scheme to detect whether the
driver has actually used the turn signal during each steering
maneuver.

5.1 Overview
Fig. 15 shows the information flow of careless steering de-

tection using data collected from the gyroscope, GPS, ac-
celerometer, and microphone on a smartphone. This appli-
cation is comprised of V-Sense and sound detection module.
V-Sense detects possible lane changes or turns using the gy-
roscope readings. Upon detecting the start point of a lane
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Figure 16: Turn signal samples and the filtered result by using a matched filter, (a) turn signal sample from a 2006 HONDA
Accord and MINI Countryman; (b) matched result from the filter with the existence of background noises inside the car.

change or turn, i.e. bump, the sound detection module ac-
tivates the microphone and starts to detect the turn signal
sound. If a lane change or turn is detected without the de-
tection of signal sound, the application declares the driver is
involved in careless driving, and triggers alarm to notify the
driver. Otherwise, the application declares it as attentive
driving.

5.2 Detection of Turn Signal
In order to detect whether the driver has used the turn

signal, V-Sense uses the following three steps: (i) collect
training samples of the turn signal sound; (ii) eliminate back-
ground noise with a matched filter; (iii) make a decision on
whether the turn signal was used during the turn or lane
change.

5.2.1 Collection of Training Sample Data Set

We first collected the turn signal sounds from two di↵er-
ent cars, 2006 Honda Accord and MINI Countryman, which
are used as sample data sets as shown in Fig. 16(a). The
measured steady rates of the turn signal in the 2006 Honda
Accord and MINI Countryman were 161 and 163 ticks per
second (shown in Fig. 16), respectively.

As the turn signal sounds acquired from the 2006 Honda
Accord has lower amplitude, and would thus be more di�-
cult to detect, we studied the sound detection module using
this data set. To test the performance of our turn signal
detection module in real driving scenario, we turned on the
engine and played music which acts the background noise
inside the car.

5.2.2 Elimination of Noise with a Matched Filter

To detect the sound emitted from the turn signals, the
detection module has to overcome two challenges: (i) it must
be resilient to the variation of SNR due to unpredictable
detection conditions; (ii) the delay in detecting a single turn
signal must be low in order to be ready for detecting the
subsequent signal. We utilized a matched filter to meet these
challenges.

The matched filter is used to detect the presence of a
known signal in the unknown signals [23]. The key idea be-
hind the matched filter is to design an impulse response that
maximizes the output SNR. Due to unpredictable driving
conditions, the noise inside the car cannot be easily mod-
eled. Thus, we model the turn signal and extract the signal
sound by using one convolution with the matched filter ker-
nel. Since the turn (sound) signal can be modeled as series

of discrete signals, we use the discrete version of matched
filter, in which the output, y[n], can be expressed as:

y[n] =
1X

k=�1

h[n� k]h[k], (10)

where the impulse response, h[n], of the matched filter is

h[n] = g[n]⌦ v[n0 � n], (11)

where g[n] denotes the power spectral density of background
noise. We can thus acquire the matched signal Matched by
applying

Result[n] = Signal[n]⌦ h[n], (12)

where signal[n] is the sound recorded by the smartphone’s
microphone inside the car and Result[n] is the output of the
matched filter.

5.2.3 Making a Decision

If the amplitude of the matched filter output is larger
than T , a pre-defined threshold set to 0.35 by default, V-
Sense declares the detection of a turn signal sound. If the
detected turn signal is accompanied by a lane change or
turn detected by V-Sense, then the application declares the
steering maneuver as being attentive. On the other hand,
if no such turn signal sound was detected, the application
declares the steering to be careless, and then alarms the
driver.

5.3 Performance of Sound Detection
Fig. 16(b) shows the performance of our sound detec-

tion module which extract signal sound from background
noise. We conducted experiments in a regular driving set-
ting, where music played inside the car and the passengers
were talking occasionally. The matched filter was able to
extract and identify the sound of the turn signals from the
background noise, even when the amplitude of the noise was
very high (radio played music at the max volume).

By integrating this accurate sound detection module with
V-Sense, the application detects careless steering and thus
enhances driving safety significantly.

6. APPLICATION II: FINE-GRAINED LANE
GUIDANCE

In this section, we demonstrate a proof-of-concept fine-
grained lane guidance application using V-Sense. Fine-grained
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Figure 17: Information flow of fine-grained lane guidance by
incorporating navigation system and V-Sense.

lane guidance allows existing navigation systems provide
higher guidance accuracy. Specifically, fine-grained lane guid-
ance detects whether the driver is in the correct lane and
alarms the driver if not.

Existing navigation systems on smartphones are constrained
by the accuracy of the built-in GPS sensor, which is at best
5⇠10m [26]. When the line-of-sight transmission between
the satellite and the phone is blocked by obstacles, such as
tunnels, bridges, and tall buildings, the accuracy quickly
drops to 20⇠100m [18]. Such limitations make it impossible
for legacy navigation systems to recognize the exact tra�c
lane that the vehicle is on. The latest update of Google Maps
does include a lane guidance function [5], but in a rather lim-
ited way: it can only provide information on which lane the
vehicle should stay, not whether it is actually on that lane.

We incorporate V-Sense in an existing navigation system
to provide a true fine-grained lane guidance. Fine-grained
lane guidance is important, since it can reduce abrupt lane
changes, and also very helpful for drivers who have lack driv-
ing experience.

6.1 Achieving Fine-Grained Lane Guidance
Based on information from an on-line map, the correct

lane for the next maneuver can be easily determined, which
is a function already provided by existing navigation sys-
tems. Hence, the main challenge of realizing the fine-grained
lane guidance application is the determination of the cur-
rent lane that the vehicle is running on. To meet this chal-
lenge, we need to determine the vehicle’s current lane via
lane change detection. The current lane can be determined
based on whether and how the vehicle has changed its lane.
Thus, by detecting and analyzing the lane changes made by
the vehicle, we can determine the vehicle’s current lane.

Lane changes may take place in two situations: (i) middle
of a road or; (ii) at intersections.4 For the first case, V-Sense
can reliably detect lane changes on the road using techniques
in Section 3. To implement accurate lane tracking for the
second case, we develop an add-on module of V-Sense called
InterHelper. In Fig. 17, we show how the navigation sys-
tem and V-Sense cooperate to determine the fine-grained
location. The navigation system is capable for determining
whether the vehicle is at the intersection. Once the vehicle

4Although it is illegal to change lane at intersections in some
U.S. states (e.g., California [16]), we still consider such a case
for generality.
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Figure 18: Turns and the corresponding turning radius at a
4-lane single carriageway intersection.

reaches an intersection, InterHelper is triggered and starts
to estimate the turning radius, Ri. Note that Ri is equiva-
lent to the horizontal displacement during the turn, which
can be derived by using the techniques described in Section
3.4. This information enable V-Sense to finally determine
the fine-grained location.

As shown in Fig. 18, there are four possibilities of lane
change at a typical 4-lane single carriageway intersection.
That is, each car has two choices of making either right or
left turn. Here, we assume the turning trajectory is an arc,
which is a common assumption in intersection design [7]. O1,
O2, O3 and O4 are centers of turning circles. InterHelper

classifies each case by di↵erentiating the turning radius, i.e.,
R1, R2, R3 and R4.

For a typical intersection, the right turn radius, R1 is
10.8m [15], the left turn radius, R3 is 20.7m, and the width
of a typical intersection is 19.2m [12]. Moreover, the lane
width is around 3.65m [24]. Based on these facts and exten-
sive road experiments, we set the threshold of di↵erentiating
R1 and R2 as 13.1m, and the threshold of di↵erentiating R3

and R4 as 21.64m. Using such thresholds and the horizontal
displacement obtained from V-Sense, the application deter-
mines whether the vehicle has changed its lane during a turn
at the intersection.

6.2 Performance of InterHelper
In order to evaluate the performance of the fine-grained

lane guidance application, we conducted 80 left and right
turns at di↵erent intersections in Ann Arbor, Michigan, U.S.,
and the results are shown in Fig. 19.

The application is shown to be able to detect 95% of right
turns with R1, 90% with R2, 90% of left turns with R3 and
85% with R4. We can therefore conclude that by integrat-
ing InterHelper into V-Sense, the application is capable
of detecting lane changes in all cases, thus determining the
vehicle’s current lane.

7. RELATED WORK
Detecting vehicle dynamics is critical for driving assistant

systems and has also been an active research area. The re-
lated e↵orts can be categorized into two main approaches:
camera-based or camera-free. For the camera-based ap-
proach, the vehicle or a stand-alone device detects the ve-
hicle’s maneuver by using its position (determined by the
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Figure 19: Performance of InterHelper.

captured images) with respect to the lane boundaries [6, 10,
9]. Some commercial applications, such as iOnRoad [8] and
Blacksensor [2], are capable of detecting lane departures by
processing the images taken by cameras on smartphones,
and thereby recognizes turns. However, all these methods
require a mounted or built-in camera and also a clear view of
the road. So, their performance can be seriously undermined
if the visibility of the road is poor.

Camera-free systems achieve comparable (to camera-based
systems) results regardless of the visibility of the road. The
authors of [28] utilized the gyroscope, accelerometer read-
ings of the smartphone and other direct readings from the
OBD-II port to detect left/right turns and also the vehicle’s
real-time velocity. MIROAD [25] also utilized the gyroscope
and accelerometer of the smartphone to acquire necessary
data to detect vehicle motions via dynamic time wrapping
(DTW). The authors of [21] utilized the orientation sensor
and accelerometer to detect the driving pattern, thus de-
termining if the driver is intoxicated. In contrast to [28],
V-Sense is infrastructure-free, i.e., no additional hardware
is required. It combines the GPS and IMU readings to ac-
quire accurate and real-time velocity estimation. More im-
portantly, in contrast with the existing work, V-Sense dif-
ferentiates not only between left and right turns but also
between lane change, U-turn, and driving on curvy roads.
These in turn enable V-Sense to accurately handle various
scenarios, such as fine-grained lane navigation in Section 6.

Furthermore, recent research and industrial e↵orts have
been focusing on building driving assistant applications on
smartphones. CarSafe [29] detects drowsiness by observing
the driver’s eye movement with the phone’s front camera.
Commercial applications [8, 2, 3, 1] utilized the phone’s front
camera to detect the front car and tra�c lane, alerting the
driver if any dangerous scenario is detected. Most of these
applications require the user to mount the phone and use the
camera to collect necessary information. This mount-before-
go feature could limit the users’ willingness, and eventually
undermine the application’s usability.

In contrast, V-Sense is a mount-free design for detecting
steering maneuvers regardless of the position of the smart-
phone. Besides, without image processing, V-Sense incurs
relatively lower computational cost. This mount-free de-
sign could pave s way for the development of many various
driving assistant applications. For example, a recent study
shows steering patterns could be utilized as a drowsiness
indicator [11].

8. CONCLUSION
As an important and emerging subject in both research

and industry communities, several driving assistant systems
have been proposed. However, the capability of many ex-
isting work is limited by its reliance on the visibility of the
road objects. Such an approach is only e↵ective when the
phone is carefully mounted and also has good visibility, i.e.,
its performance is undermined by its environment.

In this paper, we proposed V-Sense, a camera-free middle-
ware for driving assistant systems. V-Sense can accurately
and inexpensively detect and di↵erentiate vehicle steering
by only utilizing built-in sensors on smartphones. By lever-
aging an e↵ective bump detection algorithm and studying
the nature of steering, V-Sense is capable of di↵erentiat-
ing various steering patterns, such as lane change, turn,
and driving on curvy roads. Based on the camera-free fea-
ture of V-Sense, we presented two proof-of-concept applica-
tions: careless steering detection and fine-grained lane guid-
ance. V-Sense provides new functionalities without relying
on cameras to provide a broader range of driving assistance.
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