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ABSTRACT
Fiducial marking is indispensable in mobile robots, including
their pose calibration, contextual perception, and navigation.
However, existing fiducial markers rely solely on vision-
based perception which suffers such limitations as occlusion,
energy overhead, and privacy leakage.

We present Polaris, the first vision-free fiducial marking
system, based on a novel, full-stack magnetic sensing de-
sign. Polaris can achieve reliable and accurate pose estima-
tion and contextual perception, even in NLOS scenarios. Its
core design includes: (1) a novel digital modulation scheme,
Magnetic Orientation-shift Keying (MOSK) that can encode
key information like waypoints and coordinates with pas-
sive magnets; (2) a robust and lightweight magnetic sensing
framework to decode and localize the magnetic tags. Our
design also equips Polaris with three key features: suffi-
cient encoding capacity, robust detection accuracy, and low
energy consumption. We have built an end-to-end system
of Polaris and tested it extensively in real-world scenarios.
The testing results have shown Polaris to achieve an accu-
racy of up to 0.58 mm and 1◦ in posture estimation with a
power consumption of only 25.08 mW.
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Figure 1: (A) shows the magnetic sensing array of
Polaris on different robotic systems; (B) and (C) com-
pare the legacy ground-mounted vision-based tagswith
Polaris tags. Note they have the same encoding capac-
ity and posture calibration capability.
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1 INTRODUCTION
Fiducial markers are vital for mobile robots [31, 33, 39, 47].
They serve two essential purposes: 1) estimating and cali-
brating the robot’s posture and 2) identifying the marker
information, e.g., the marker ID and concise contextual mes-
sages. Their efficacy has led to their wide deployment in var-
ious mobile “robots,” including warehouse robots [20, 28, 29],
household vacuum robot cleaners [18, 19].

However, detecting and tracking fiducials usually relies on
vision sensors like cameras and LiDARs [45]. This leads to
the following three limitations of modern fiducial systems.
Reliability. Cameras suffer from occlusion that can severely
limit their use in practice. This has been a major hindrance
for fiducials [51, 66]. The visual markers are also susceptible
to diverse disturbances to their visibility. For example, con-
tamination on the factory floor incurs navigation errors to
warehouse robots, thus severely limiting their efficiency [28].
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Energy overhead. Vision-based fiducials require substan-
tial computation resources, even with low-power cameras
integrated [30]. This is a pressing issue as robotic systems
are often powered by batteries and subject to diverse con-
straints [56]. For example, the localization of a microrobot
(40 cm× 7 cm) that employs vision-based fiducials consumes
a power of 9W [32]. In contrast, miniature robots usually
operate with a power budget of < 30mW for their perception
[23, 35, 38, 50]. Due to their computation and energy con-
straints, they primarily depend on proximity sensors (e.g.,
infrared (IR), ultrasonic) to tackle critical tasks such as in-
specting confined pipelines [40] and searching for survivors
in disaster debris [22, 46], lacking the ability of pose estima-
tion and contextual perception.
Privacy concerns. Detecting fiducial markers with a cam-
era could become a major source of privacy leaks [65]. For
example, today’s household robots (e.g., Amazon Astro) need
to frequently access private areas like bedrooms and bath-
rooms. Therefore, a robot equipped with an active camera
can cause severe privacy threats to the users.
We present Polaris, the first vision-free fiducial system.

It achieves posture estimation and information encoding
without using a camera. As shown in Fig. 1, Polaris consists
of two core modules: (1) a novel magnetic fiducial tag using
passive magnets with a compact form factor and high data-
encoding capacity; (2) a robust magnetic sensing framework
for interpreting fiducials with limited energy consumption.
Upon detecting the magnetic tag by the sensing module, the
robot can decode the embedded information and estimate
the robot’s orientation and position. Polaris is designed
to provide three key features of a fiducial system: sufficient
encoding capacity, robust detection accuracy, and low power
consumption. To achieve these features, we must tackle two
unique challenges as follows:
Compact and high-capacity tag design. The Polaris

tag requires a compact design to support various robotic sys-
tems with different form factors, ranging frommedium-sized
robots (e.g., warehouse robots and vacuum robot cleaners) to
miniature robots. To achieve this, Polaris employs a high-
capacity tag design with a well-structured constellation of
passive magnets (Sec. 5). In particular, a Polaris tag adopts
a 2D tag layout similar to a chessboard, where each inter-
section point symbolizes a potential location for placing a
magnet. To enable posture estimation, three magnets are po-
sitioned at three vertices to form a robust position-detection
pattern. To embed rich information, we devise a unique digi-
tal modulation scheme calledMagnetic Orientation-shift Key-
ing (MOSK), which leverages magnets’ polarity orientation
and placement. Specifically, MOSK uses the polarity orien-
tation of a diametrically magnetized disc magnet to encode
data. With MOSK, a Polaris tag can achieve the same level
of encoding capacity as existing visual fiducial systemswith a

compact layout. For example, as shown in Fig. 1(C), a 3×3𝑐𝑚2

Polaris tag consisting of 9 magnets can encode 36 bits of
data. This encoding capacity is comparable to the tag family
“36h11” in AprilTag 2 [60], recommended for most robotic
applications. Aswewill elaborate in Sec. 7.3, such high encod-
ing capacity also empowers the error correction capability
of Polaris to ensure reliable detection, e.g., by adjusting
the minimum Hamming distance [36] between two tags.

Robust and energy-efficient sensing framework. The
sensing framework of Polaris must accurately interpret
these compact magnetic fiducials, even in complex environ-
mental conditions. Our sensing framework features a robust
sensing pipeline and an energy-efficient hardware design.
For the sensing pipeline, we propose a lightweight and ac-
curate algorithm to effectively detect and localize each mag-
net with millimeter-level accuracy. We have implemented
system-on-chip (SoC) support, i.e., integrate Polaris on low-
power chips like ESP32, for embedded magnetic sensing. For
the hardware design, we utilize low-cost, energy-efficient
Hall-effect magnetometers. We also refine the hardware con-
figuration (e.g., the circuit) and minimize the number of
magnetometers to further reduce energy consumption. Our
evaluation in Sec. 8.5 demonstrates that the sensor array
of 2.5𝑐𝑚 × 1.2𝑐𝑚, comprising three triaxial magnetometers,
consumes a power of only 25.08mW.

This work assesses Polaris’ usability across two distinct
robotic platforms varying in size and sensing modality, in-
cluding a robot car and a miniature car, as shown in Fig. 1(A).
We have built an end-to-end system of Polaris on the robot
car and evaluated its performance under varying scenar-
ios. We have thoroughly analyzed the resilience of Polaris
against various real-world noises, including magnetic, non-
magnetic, and ferromagnetic objects. The Polaris sensing
framework has been incorporated into a low-power embed-
ded chip (an ESP32-S3 SoC) to demonstrate its compatibility
with miniature robots. The power consumption of Polaris’
sensing array and computing unit have been analyzed, and
these evaluation results demonstrate the practicality and
resilience of Polaris as a fiducial system for mobile robots
in real-world scenarios. To help reproduce the results of
Polaris, we open-source all of its technical details in [17]
for the research community.
In summary, this paper makes the following contributions:
• Presenting Polaris, the first vision-free fiducial system;
• Introducing MOSK — a new data encoding scheme that
embeds rich information into a compact magnetic tag;

• A lightweight magnetic sensing module to decode the
embedded information and estimate the robot’s posture at
millimeter-level accuracy; and

• Extensive experimental studies to demonstrate Polaris’
performance in real-world settings.
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2 BACKGROUND AND MOTIVATION
2.1 Fiducial Systems
Ground-mounted fiducial markers are essential for the lo-
calization of mobile robots. These markers can provide pre-
cise landmarks such as waypoints and coordinates. Robots
use them to extract contextual information, calibrate their
posture, and plan their paths. This capability differentiates
fiducial systems from other perception techniques like Visual-
Inertial Odometry (VIO), Global Positioning System (GPS),
and Simultaneous Localization and Mapping (SLAM).

Vision-based fiducials have been widely used due to their
accuracy [39]. A visual fiducial system typically comprises
printed visual markers and a camera. One can embed vital
contextual information, such as marker ID and waypoints,
in a fiducial tag. By using the relative position of the fiducial
with the camera reference frame, robots can then perform
accurate posture estimation using computer vision methods.
For example, upon detecting an AprilTag [47], a robot can
estimate its posture by using homography estimation [37],
i.e., finding the correlation between the tag coordinate sys-
tem and the 2D image coordinate system. This feature is
the cornerstone of various robotic applications. For example,
Amazon’s warehouse robots [29, 34] navigate by utilizing
ground-mounted 2D barcodes and handle billions of ship-
ments every year [6]. Existing robotic systems also integrate
visual fiducials to perform precise docking tasks for recharg-
ing their battery and transmitting data [10, 18, 19].
However, these visual fiducial systems are susceptible to

occlusion and limited visibility. For example, the detection
performance of AprilTag could decrease to 76%, with only
a 4.38% occlusion rate according to [51]. We also assessed
the detection performance of an AprilTag (ID “0”) across
four occlusion scenarios with visual disturbances, e.g., dark
dust, as shown in Fig. 2. The weights of dark dust used for
light, moderate, and heavy occlusion were only 30 mg, 70
mg, and 100 mg, respectively. An Astra Plus camera [16]
was stably mounted directly above the tag with a distance
of 20 cm. We employed the standard AprilTag detection
algorithm [8] with default parameters. The average detection
accuracies are 1, 0.89, 0.42, and 0, respectively. Our results
indicate that existing visual fiducials are highly susceptible
to occlusion. Note that heavy occlusion (i.e., 0.1 g of dark
dust) can fully paralyze the standard fiducial system despite
the image features remaining visible to humans.

Current vision-basedmethods also require significant com-
putational resources for detecting and localizing visual fidu-
cials. For example, achieving 640× 480 detection of AprilTag
at 20 Hz on a Raspberry Pi 3 was feasible, yet the CPU us-
age exceeded 150% according to [39]. This limits their prac-
ticability for diverse robotic configurations, e.g., resource-
constrained robots. SOTA ultra-low power cameras, such as

Figure 2: Occlusion test for AprilTag.

the HM01B0 [12], usually offer limited resolution (320× 320).
Our results in Fig. 2 demonstrated that even high-resolution
cameras, i.e., 1920 × 1080, failed to detect visual fiducials
at a close range. Moreover, using an always-on camera to
detect fiducial markers accompanies privacy risks [65]. The
above limitations undermine the performance and usability
of legacy fiducial systems in the real world. Thus, a vision-
free and energy-efficient fiducial system is crucial for en-
abling the robust and precise localization of mobile robots.

2.2 Why Magnetic Sensing?
Magnetic sensing uses MEMS magnetometers to sense the
magnetic field. These sensors leverage the Hall effect [49] to
measure the strength and orientation of the magnetic field.
Compared with other sensing modalities, magnetic sensing
has the following advantages:
(1) Reliability. Unlike vision-based methods, the mag-

netic field is resilient to the NLOS occlusion. Moreover, the
magnetic field can penetrate water and concrete, making
it well-suited for harsh environments. Passive magnets are
also durable, allowing for deployment in challenging envi-
ronments for critical tasks [61]. (2) Energy-efficiency. Hall-
effect sensors incur low power consumption. For example,
COTS magnetometers typically have a current consumption
of less than 1 mA [9, 14]. (3) Privacy protection. Unlike
cameras, magnetic sensing relies on detecting and measur-
ing the magnetic field. This makes it well-suited for sensing
tasks where privacy protection is critical.

3 RELATEDWORKS
3.1 Fiducial Marking System
Fiducial markers are used to provide position references
and posture estimation for mobile robots. Existing fiducial
marker systems commonly use cameras thanks to their avail-
ability at low cost. 2D barcodes, e.g., Data Matrix [7] and QR
Code [55], have been employed as fiducial markers for robots
in industrial settings [6, 34]. ARTag [33] achieves robust
marker detection even under partial occlusion, providing
a data payload of 11 bits. AprilTag [47], building upon the
framework of ARTag, provides enhanced robustness against
occlusions and distortions using a graph-based segmentation
algorithm. It offers a data payload ranging from 4 to 16 bits.
However, these visual fiducial systems rely heavily on

onboard cameras and computer vision techniques for marker
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Figure 3: System overview of Polaris.

detection. As we have elaborated in Sec. 2.1, they suffer from
real-world issues, including reliability, energy efficiency, and
privacy concerns. In contrast, Polaris is the first vision-
free fiducial marker system that provides rich data encoding
capability and accurate posture estimation for robots.

3.2 Magnetic Sensing
Sensing magnetic fields has been used extensively for object
positioning and tracking applications. For example, Finexus [26]
utilizes a triangulation-based algorithm to localize electro-
magnets nearby. However, this approach relies on each elec-
tromagnet generating oscillatory magnetic fields, thus re-
quiring a battery pack. Recently, the Levenberg–Marquardt
(LM) algorithm [25, 54] has been employed to track passive
magnets over short distances. However, the iterative opti-
mization process incurs quadratic computational load.
Magnetic sensing is also used for robot navigation. For

example, automated guided vehicles (AGVs) navigate along
a predetermined path constructed with magnetic tapes by
using an onboard magnetometer ruler to detect the magnetic
field [21]. However, this approach cannot provide contextual
information, e.g., the robot’s precise location and orientation.
To address this problem, magnetic spots are employed to
enhance precise localization and enable flexible movement
paths [28]. However, these systems are constrained by a
limited localization accuracy (i.e., around 11 cm) and are
ill-suited for encoding rich context information.

4 GOALS OF POLARIS
We explore the feasibility of employing magnetic sensing in
a vision-free and robust fiducial system for mobile robots.
Polaris tag offers the same key functionalities as classic
fiducial markers, i.e., information encoding and posture esti-
mation, with magnetic sensing. Polaris’ unique advantages,
i.e., robustness, energy efficiency, and privacy protection,
make it an ideal candidate for various challenging scenar-
ios. Specifically, it can complement existing visual markers
in challenging scenarios (e.g., occlusion/contamination on
the floor of heavy-duty factories). For resource-constraint
robotic systems, Polaris can be the standalone module for
providing fiducial capability. Polaris is privacy-preserving
in various real-world settings. For example, it can help robotic

vacuums [19] dock precisely to their charging stations with-
out using camera(s).
Information encoding. As we will elaborate in Sec. 5, a
Polaris tag is designed in a 2D plane, where each intersec-
tion symbolizes a potential position for a magnet. By varying
both the polarity orientation and the spatial placement of
each magnet, Polaris tag can encode rich information. For
example, with just four magnets, Polaris can encode 20,480
unique messages, e.g., marker ID “0” to “20479”, similar to
existing fiducial mechanisms. To enrich the context informa-
tion, each ID can denote unique (navigation) instructions,
e.g., “0” is “move slowly”. Upon detecting the tag, robots can
decode the ID and perform the actions.
Posture estimation. Upon detecting the tag and recon-
structing its layout, a robot equipped with Polaris’ sensing
array can determine its posture relative to the tag, i.e., the
𝑥,𝑦, 𝑧 coordinates and the heading angle. Our experiment
results in Sec. 8.4 demonstrate that Polaris can achieve
an accuracy of 0.58 mm and 1◦ in position and orientation
estimation, respectively.
Fig. 3 shows a system overview of Polaris. To facilitate

the construction of the magnetic tag (Sec. 5), Polaris allows
users to determine the tag’s layout — the number, spacing,
and layout of passive magnets. Polaris’ sensing module
(Sec. 6) performs three tasks: detect magnets, recognize the
polarity and localize magnets.

5 DESIGN OF POLARIS TAG
We first introduce MOSK for information encoding. Next,
we analyze Polaris’ encoding capacity.

5.1 Two-dimensional Tag Layout
To support the ground-mounted usability, i.e., reliable pos-
ture estimation and rich encoding capacity , we propose a
2D, chessboard tag layout. As shown in Fig. 4(a), each inter-
section point of the grid serves as a potential position for
magnet placement. Here, 𝐾 denotes the tag order, and 𝑑 is
the distance between two adjacent intersections.
With this 2D layout, Polaris first introduces a robust

position-detection pattern tailored for accurate posture esti-
mation. To achieve this, Polaris utilizes the three vertices
of the 2D plane. As shown in Fig. 4(b), the bottom-left vertex
of a 2D plane is labeled as 𝑣1, and the subsequent vertices,
moving in a clockwise direction, are labeled as 𝑣2, 𝑣3, and 𝑣4.
The three magnets can be placed at 𝑣1, 𝑣2, and 𝑣3. This design
resembles the QR code’s finder pattern [55]. We can estimate
position by detecting and localizing these three magnets us-
ing the sensing pipeline in Sec. 6.2. The triangulation from
these three magnets also enables us to determine the heading
angle between the robot and the position pattern.
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(a) 2D tag layout (b) Position pattern

Figure 4: 2D grid layout of Polaris tag.

(a) Two magnetization directions (b) Different polarity orientations

Figure 5: Polarity configuration of disc magnets.

5.2 Magnetic Orientation-shift Keying
Webuild a novel encoding scheme calledmagnetic orientation-
shift keying (MOSK), which utilizes and augments the polar-
ity configurations of a diametrically magnetized disc magnet
to embed information.

5.2.1 Rotational polarity orientation. Encoding information
with magnets presents significant challenges owing to their
limited data encoding capacity. Conventional approaches typ-
ically depend on the North/South (N/S) polarity of a magnet
to represent binary bits, i.e., “0” and “1”, such as magnetic
stripe card [52]. However, this encoding scheme severely
limits the amount of information that can be encoded. For
example, eight magnets can only encode eight bits of data.
How can we reliably embed rich information into the tag

using a minimal number of magnets? Our key innovation is
using the fine-grained polarity orientation of passive mag-
nets. Specifically, differentmagnetic orientationswould incur
changes in the magnetometer readings, thus ensembling dif-
ferent information. To achieve this goal, we first determine
the form factor of passive magnets and then leverage the
polarity orientation of each magnet. Considering the deploy-
ability and durability of Polaris tag, we use disc-shaped
cylindrical magnets. There are two types of disc magnets
based on the direction of magnetization — diametrically and
axially magnetized magnets — as shown in Fig. 5(a). Com-
pared to the axially magnetized magnet, the diametrically
magnetized magnet offers a unique advantage in encoding
information: the variability of its polarity orientation. As
shown in Fig. 5(b), we can alter the polarity of a diamet-
rically magnetized disc magnet to different orientations to
represent different information.

Hence, in MOSK, the polarity orientation of a disc magnet
is shifted to represent the digital data. The angular constel-
lation graph in Fig. 6(a) demonstrates the simplest form of
MOSK. That is, a polarity orientation at 0 degrees (i.e., for-
ward orientation) represents a binary ’1’, while an orientation

Figure 6: Constellations of MOSK modulation.

(a) Orientation setting (b) A 3 × 3 tag

Figure 7: Orientation setting and an exemplary tag.

at 180 degrees denotes a binary ’0’. Figs. 6 (b) and (c) show
that by employing more orientation shifts, MOSK can encode
more bits of information. Thus, we integrate these orienta-
tion configurations into the 2D layout. As shown in Fig. 7(a),
the polarity orientation of a disc magnet is denoted as 0°
aligned with the orientation of the position pattern. Then,
we can rotate the disc magnet clockwise to have different
polarity orientations. For example, Fig. 7(b) shows a 3 × 3
tag of eight magnets, each with a unique orientation. This 3-
order tag configuration can embed 24-bits based on Fig. 6(c).
The encoding capacity is significantly improved compared
to the eight bits encoded solely using the N/S pole.

5.2.2 Spatial permutation of magnets. Relying solely on the
polarity orientation for encoding may restrict the usability
of the Polaris tag. Specifically, a 𝐾 × 𝐾 tag requires 𝐾2 − 1
magnets for maximum encoding capacity. This demands an
excessive amount of magnets as 𝐾 increases. Although mag-
nets are low-cost, i.e., less than $0.015 in our tag prototype
(Sec. 7), using unnecessary magnets can lead to extra fab-
rication costs. To solve this problem, MOSK introduces the
spatial permutation of magnets in the 2D plane. This encod-
ing factor enhances the encoding capacity, allowing Polaris
to encode rich information while using a minimal number of
magnets. Specifically, three vertices are fixed as the position-
detection pattern (Fig. 4(b)). Now, one can only manipulate
the polarity orientation of each magnet in the vertex. The
remaining𝐾2−4 intersection points can allocate a maximum
of 𝐾2 − 4 magnets. Thus, for a specific number of magnets
denoted by𝑀 , there are a total of

(
𝐾2−4
𝑀−3

)
placement permu-

tations for the remaining𝑀 − 3 magnets. Using this scheme,
Polaris can achieve a customizable tag design, depending
on the required information capacity.

5.2.3 Minimal inter-magnet distance. To achieve a compact
tag design, we aim to determine the distance of two adjacent
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(a) W/o coupling (b) W/ coupling

Figure 8: Coupling effect of two adjacent magnets.

intersections, i.e., the value of 𝑑 in Fig. 4(a). This value deter-
mines the minimal distance between two adjacent magnets
in a tag. The key challenge is: reducing 𝑑 introduces unde-
sired magnetic field interference due to the coupling effect
between adjacent magnets. We elaborate on the interference
incurred by the coupling effect in Fig. 8. Two diametrically
magnetized disc magnets (1 mm height, 3 mm diameter) are
positioned 5 cm apart. We use a magnetometer that moves
across the two magnets at a speed of 10 cm/s and a height of
2 cm. Next, we reduce the inter-magnet distance to 2cm to
demonstrate the coupling effect and measure the raw data in
the same setting. Fig. 8(a) shows the magnetometer reading
without coupling effect. Peaks incurred by two magnets can
be differentiated. In contrast, as shown in Fig. 8(b), the cou-
pling issue produces undesired peak overlapping and signal
distortion, leading to erroneous interpretation of magnets.
To address the coupling issue, we determine the optimal

value of 𝑑 via simulation. With a specified magnet configu-
ration (e.g., the size and magnetization), we can model the
magnetic field created by two adjacent disc magnets using
MagPylib [48]. Then, we can determine the minimal inter-
magnet distance 𝑑min when no magnetic fields overlap be-
tween the two magnets. Next, we explore the feasibility of
achieving a more compact tag design by reducing the inter-
magnet distance. Our empirical exploration suggests that the
minimal inter-magnet distance can be reduced to 0.8𝑑min.

5.3 Encoding Capacity Analysis
The encoding capacity ofMOSK depends on three factors: the
tag order𝐾 , the number of rotational polarity configurations,
denoted as 𝑃 , and the number of disc magnets𝑀 . Specifically,
with𝑀 magnets and 𝑃 orientations of each magnet, we can
encode 𝑃𝑀 unique messages. The spatial permutations of
𝑀−3magnets among the𝐾2−4 intersection points in the 2D
plane can encode

(
𝐾2−4
𝑀−3

)
messages. Thus, the total encoding

capacity can be calculated as:

𝐶 = 𝑃𝑀 ·
(
𝐾2 − 4
𝑀 − 3

)
. (1)

Based on Eq. (1), the encoding capacity increases quadrat-
icallywith the tag order𝐾 . The effects of 𝑃 and𝑀 are plotted
in Fig. 9. The extended number of orientations and magnets
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(a) Varying 𝑃 , 𝐾=4,𝑀=5
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(b) Varying𝑀 , 𝐾=4, 𝑃=8

Figure 9: Encoding capacity with different factors.

Figure 10: The bar-shaped sensor array.

can exponentially enhance the encoding capability. For
example, with 𝑃 = 16, a 4-order tag can encode more than
41 bits using only eight magnets, showing the potential of
encoding rich information with Polaris.

6 SENSING MODULE DESIGN
6.1 Magnetometer Array
We use COTS Hall-effect magnetometers [9, 14] to detect
the magnetic field strength of magnets. Magnetometers are
usually low-cost components with a price of $1.5 for each
unit. We integrate several magnetometers into a bar-shaped
sensor array for detecting and locating the ground-mounted
tag (Fig. 10). This linear form factor enables easy installation
on robots. The overall length of the sensor array is denoted
by 𝐿, and the inter-magnetometer distance is 𝑑𝑠 .

6.2 Sensing Pipeline
Polaris first detects each magnet and determines each mag-
net’s polarity orientation. Then, it localizes the relative po-
sition of each magnet to the sensor array. Based on these
results, Polaris can reconstruct and interpret the 2D tag.

6.2.1 Detect magnet(s). As shown in Fig. 8(a), we can de-
tect the presence of a magnet by detecting the peak signal
from the raw data using the existing amplitude-based peak-
detection algorithm [58]. The raw magnetometer readings
may vary due to environmental factors such as the Earth’s
magnetic field or the soft/hard iron effect caused by sur-
rounding ferromagnetic objects [62]. To ensure reliable and
accurate detection, we employ the first derivative signal of
the raw peak [61] to further eliminate false detection(s).

6.2.2 Detecting the polarity orientation. Polaris needs to
derive the polarity orientation of each magnet relative to the
position-detection pattern of the 2D tag, i.e., the value of 𝜃 𝑡𝑚
in Fig. 11(a). With 𝜃 𝑡𝑚 , Polaris can decode the embedded
bits based on the constellation shown in Fig. 6.
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Figure 11: The analytical model of polarity orientation.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time (s)

−200

−100

0

100

200

M
ag

ne
to

m
et

er
 re

ad
in

g 
(u

T) x-axis data
y-axis data
z-axis data

(a) Simulated readings (𝜃𝑚𝑠 = 0◦)
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(b) Measured readings (𝜃𝑚𝑠 = 0◦)
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(c) Simulated readings (𝜃𝑚𝑠 = 45◦)
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(d) Measured readings (𝜃𝑚𝑠 = 45◦)

Figure 12: Simulated vs. real-world sensor readings at
different headings.

However, calculating 𝜃 𝑡𝑚 is challenging due to the arbitrary
headings of a mobile robot. To overcome this challenge, we
use two key insights: the relative orientation of the sensor
array to the tag (denoted as 𝜃 𝑡𝑠 ) and the relative orientation
of the sensor array to the magnet (denoted as 𝜃𝑚𝑠 ). As shown
in Figs. 11 (b) and (c), once 𝜃 𝑡𝑠 and 𝜃𝑚𝑠 are derived, we can
have 𝜃 𝑡𝑚 = 𝜃 𝑡𝑠 + 𝜃𝑚𝑠 .
How can we accurately derive 𝜃 𝑡𝑠 and 𝜃𝑚𝑠 ? Note that 𝜃 𝑡𝑠

is the relative heading angle of the tag to the sensor array,
which can be determined by the posture estimation process in
Sec. 6.2.4. To obtain 𝜃𝑚𝑠 , we leverage the mathematical model
of disc magnets and propose a unique analytical scheme.
Specifically, we discover a strong correlation between the
theoretical magnetic field derived from the mathematical
model [24] and the real-time measured data. Note that the
mathematical model has been integrated into widely used
simulation tools such as MagPylib [48]. Interested readers
can refer to [24] for more details.
We now analyze the correlation between the theoretical

magnetic field and the raw measured data using simulation.
Figs. 12 (a) and (b) show the simulated readings via MagPylib
and the real-time measured data under the same settings,
i.e., the same magnet configuration and moving heading. In
Fig. 12(b), we observe an offset in each axis between the

Figure 13: Themagnetic field template can be generated
by varying lateral distances and orientations.

synthesized and measured data caused by the environmen-
tal magnetic field, i.e., the earth’s magnetic field. By lever-
aging derivatives, this offset does not affect the template
alignment result. This feature helps enable a calibration-free
scheme since it is resilient against the magnetometer’s in-
trinsic drift [62], i.e., the data offset and scale distortion in a
sensor. Figs. 12 (c) and (d) show the results with a 45◦ head-
ing, demonstrating that the data exhibits distinct features
at different movement headings. Based on this insight, we
can derive 𝜃𝑚𝑠 by aligning the measured data with a template
consisting of synthesized data series.
The data series alignment can be implemented using ex-

isting algorithms, such as dynamic time warping (DTW) [2],
convolutional neural networks (CNNs) [44], and recurrent
neural networks (RNNs) [63]. However, DTW can introduce
data misalignment due to bias [2, 59] since the magnetic
field data varies with location or orientation. CNNs and
RNNs require substantial computational resources, thus lim-
iting their efficiency on resource-constrained platforms. To
achieve lightweight and highly accurate data series alignment,
we employ a derivative dynamic time warping (DDTW) al-
gorithm [41] and utilize three-axis magnetometer readings.
Compared to DTW, the DDTW algorithm uses the derivative
of the magnetic field, thus overcoming the offset issue in the
sensor reading as shown in Fig. 12, which can provide robust
features and eliminate data bias. Combining three-axis data
allows the alignment algorithm to differentiate fine-grained
polarity orientations (Sec. 8.3.5). Our approach consists of
template construction and data series alignment.
Template construction. Based on the analytical model,
Polaris first constructs a template by synthesizing the mag-
netometer data in the offline stage. The synthesis process
requires two inputs: the configuration of the magnet (e.g.,
magnetization and size) and the ground clearance of the
robot. Note that these are a one-time effort that users can
efficiently make in real-world applications. Since robots can
be highly mobile, the template must cover various dynamic
magnetic patterns to enable accurate alignment. However, a
large template requires more computing time, thus limiting
its efficiency. To efficiently emulate real-world data traces
when a magnet impinges the sensing array, we consider
two key parameters, i.e., the lateral distance and the relative
heading 𝜃𝑚𝑠 as shown in Fig. 13.
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Figure 14: Movement analysis for localizing a magnet.

Specifically, the template size, i.e., the number of synthe-
sized trajectories are related to the resolution of the lateral
distance (denoted as 𝑟𝑒𝑠𝑑 ) and the headings (denoted as 𝑟𝑒𝑠𝜃 ).
As shown in Fig. 13(a), when detecting a magnet in a 2D tag,
the value of lateral distance ranges from −𝑑2 to 𝑑

2 since the
minimal inter-magnet distance is 𝑑 (Sec. 5). The value of 𝜃𝑚𝑠
ranges from 0◦ to 360◦ (Fig. 13(b)). Thus, the template size
can be calculated by:

(𝑑/𝑟𝑒𝑠𝑑 + 1) · (360◦/𝑟𝑒𝑠𝜃 + 1). (2)

According to Eq. (2), fine-grained 𝑟𝑒𝑠𝑑 and 𝑟𝑒𝑠𝜃 can gen-
erate a template that contains detailed trajectories and en-
hances the alignment accuracy of 𝜃𝑚𝑠 . However, this setting
can be demanding for the computational resource. To tackle
this issue, we allow users to adjust the resolution of Polaris
for specific robotic systems. In particular, our experimental
results indicate that a lateral distance resolution of 𝑑/4 is
sufficient for the alignment process thanks to the compact
tag layout. For the value of 𝑟𝑒𝑠𝜃 , as we will elaborate in Sec. 8,
10◦ resolution can differentiate tags encoded with 8-MOSK,
which leads to encode 224 unique messages with a 3-order
tag of eight magnets. At a 1◦ resolution, Polaris can support
20-MOSK — it enables encoding 235 unique messages.
Data series alignment. We perform precise time-series
alignment between the raw data sequence and the template.
The number of data points in each data series can be deter-
mined by the value of 𝑑 . Specifically, combining the robot’s
velocity 𝑣 and magnetometer’s sampling rate 𝑓 , the number
of data points 𝑛 = 𝑓 𝑑

𝑣
. To further reduce the time consump-

tion, we implement the DDTW-based alignment algorithm
in C. Our experimental results in Sec. 8 indicate that Polaris
can decode a 8-MOSK tag with 𝑟𝑒𝑠𝜃 = 10◦, 𝑟𝑒𝑠𝑑 = 4/𝑑 and
𝑛 = 40, which only incurs a time delay of <30 ms.

6.2.3 Localize magnets. To estimate the posture and decode
information, Polaris needs to localize each magnet in a
2D tag, i.e., the coordinates of each magnet relative to the
sensor array. Existing localization schemes in magnetic sens-
ing usually use iterative optimization, such as the Leven-
berg–Marquardt (LM) algorithm [25, 54]. These approaches
are not feasible due to the requirements of quadratic com-
putation complexities. In Polaris, we present a lightweight
and highly accurate localization algorithm comprised of

three key steps: movement modeling, lateral position es-
timation, and longitudinal position estimation.
Movementmodeling.Wefirst analyze andmodel themove-
ment when a sensor array detects a Polaris tag. As shown
in Fig. 14(a), we present the geometry between the magnet
and Polaris’ sensing array when detecting a magnet, with
the y-axis of the coordinate aligned with the magnet’s N pole.
The sensor height, i.e., the ground clearance of the robot, is
represented as ℎ.

We present an effective method for locating a magnet with
two adjacent magnetometers, 𝑠𝑖 and 𝑠 𝑗 . We first determine
the hardware requirements for this localization scheme by
analyzing the worst-case scenario: localizing two adjacent
magnets simultaneously. As shown in Fig. 14(b), 𝑠1 and 𝑠2
are used to localize “Mag 1”, while 𝑠3, 𝑠4 localize “Mag 2”.
We need to determine the inter-sensor distance 𝑑𝑠 to ensure
no magnetic field superposition on 𝑠2 and 𝑠3. To solve this
problem, we leverage the minimal inter-magnet distance 𝑑
(Sec. 5). Specifically, for each magnet, the maximal distance
that a sensor can sense is 𝑑/2 based on the minimal inter-
magnet distance 𝑑 . Thus, the maximal inter-sensor distance
𝑑𝑠 should be 𝑑/2. For a 𝐾-order tag, 2𝐾 sensors are needed
to simultaneously locate at most 𝐾 magnets.

Next, we need to determine the position of 𝑠𝑖 and 𝑠 𝑗 relative
to the magnet’s coordinate. Here, we only need to determine
the 2D positions (𝑥 and 𝑦 axis) of 𝑠𝑖 and 𝑠 𝑗 . This insight helps
us convert the 3D localization problem to a 2D position
estimation task using two adjacent sensors.
Lateral position estimation. We first derive the lateral po-
sition. i.e., the position in the 𝑥-axis of the magnet as shown
in Fig. 14(a). Specifically, the lateral position of the magnet is
determined by the values of 𝑑𝑖𝑠 and 𝑑

𝑗
𝑠 , which are subject to

the constraint𝑑𝑖𝑠 +𝑑
𝑗
𝑠 = 𝑑𝑠 . The key challenge is the computa-

tion of 𝑑𝑖𝑠 and 𝑑
𝑗
𝑠 with arbitrary headings, as shown in Fig. 14

(c). To address this issue, we introduce two critical pieces of
information: the 𝜃𝑚𝑠 derived from the DDTW-based align-
ment process and the mathematical model in [24]. The core
idea is to convert the problem to a nonlinear optimization
problem by analyzing the correlation between the measured
and theoretical values.

As shown in Fig. 14(c). 𝑠𝑖 and 𝑠 𝑗 can measure the magnetic
field strength created by themagnet using the peak-detection
algorithm at time 𝑡1. The orientation between themagnet and
the sensor array is 𝜃𝑚𝑠 , derived from the alignment process.
Hence, the coordinates of 𝑠′𝑖 and 𝑠′𝑗 at 𝑡1 can be calculated by
(𝑑𝑖𝑠 cos𝜃, 𝑑𝑖𝑠 sin𝜃,−ℎ) and (−𝑑 𝑗𝑠 cos𝜃,−𝑑 𝑗𝑠 sin𝜃,−ℎ), respec-
tively. We denote the measured magnetic field strengths by
𝑠′𝑖 and 𝑠′𝑗 at 𝑡1 as 𝐵𝑖𝑚 and 𝐵 𝑗𝑚 . The theoretical magnetic field
at (𝑑𝑖𝑠 cos𝜃, 𝑑𝑖𝑠 sin𝜃,−ℎ) and (−𝑑

𝑗
𝑠 cos𝜃,−𝑑 𝑗𝑠 sin𝜃,−ℎ) are de-

noted as 𝐵𝑖𝑡 and 𝐵
𝑗
𝑡 . Combining these results, we can have

the following nonlinear-constrained optimization problem:
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Figure 15: Real-world tests of tag reconstruction steps.

min
𝑑𝑖𝑠 ,𝑑

𝑗
𝑠

(
𝐵𝑖𝑡

𝐵
𝑗
𝑡

− 𝐵𝑖𝑚

𝐵
𝑗
𝑚

)2
+ (𝑑𝑖𝑠 + 𝑑

𝑗
𝑠 − 𝑑𝑠 )2

s.t. 0 ≤ 𝑑𝑖𝑠 , 𝑑
𝑗
𝑠 ≤ 𝑑𝑠 .

(3)

To solve for the two variables 𝑑𝑖𝑠 and 𝑑
𝑗
𝑠 with Eq. (3), we

can use existing optimization algorithms like Nelder-Mead
algorithm [43] and SLSQP [42] thanks to their computational
efficiency when handling a limited number of variables. Our
evaluations in Sec. 8 also indicate that Polaris can efficiently
derive the lateral distance in < 5 ms implemented by C.
Based on the estimated 𝑑𝑖𝑠 and 𝑑

𝑗
𝑠 and inter-sensor distance

𝑑𝑠 , we can derive each magnet’s lateral position relative to
the sensor array’s origin point, i.e., 𝑠1.
Longitudinal position estimation. To compute the lon-
gitudinal position of each magnet, we can utilize both the
robot’s velocity and the sensor array’s sampling rate. Specif-
ically, we can denote the longitudinal position of the first
magnet detected by the sensor array as zero. Then, we can
derive the longitudinal position of each magnet relative to

the first magnet by 𝐿𝑖 = 1
𝑓

𝑝𝑖∑
𝑗=0
𝑣 𝑗 . The variables 𝑣 , 𝑓 , and 𝑝𝑖

are the robot’s velocity, sample rate, and the polarity index
of 𝑖𝑡ℎ magnet in the raw data series.
6.2.4 Reconstruct the tag. Once we determine the lateral
and longitudinal position of the magnet relative to the sen-
sor array, the tag layout can be reconstructed. Based on the
reconstruction process, Polaris can perform posture esti-
mation and information decoding.
Posture estimation. The posture estimation process first
identifies the three vertex magnets from the detected mag-
nets and reconstructs the position-detection pattern using
triangulation. For the orientation estimation, it compares
the reconstructed pattern with the standard pattern using
rotation transformation.
Information decoding. With 𝜃 𝑡𝑠 and 𝜃𝑚𝑠 , we can derive
the polarity orientation of each magnet relative to the tag
layout, 𝜃 𝑡𝑚 , based on 𝜃 𝑡𝑚 = 𝜃 𝑡𝑠 +𝜃𝑚𝑠 . Then, Polaris can decode
the tag ID by comparing each magnet’s estimated polarity
orientation and position with the synthesized tag set.

We performed a benchmark test to illustrate the tag recon-
struction process. Specifically, we use the 3-order tag with
eight magnets as shown in Fig. 7(b). A robot car equipped
with the sensor array (Sec. 7) moves over this tag with a

Figure 16: Fabrication process of a Polaris tag.

heading angle of 0◦. The reconstruction process is shown
in Fig. 15. It first detects each magnet and derives 𝜃𝑚𝑠 with
the polarity alignment algorithm. Then it localizes each mag-
net’s position relative to the sensor array using 𝜃𝑚𝑠 . Next, it
reconstructs the position-detection pattern to estimate the
heading angle 𝜃 𝑡𝑠 . Finally, using 𝜃𝑚𝑠 and 𝜃 𝑡𝑠 , it determines the
polarity orientation (i.e., 𝜃 𝑡𝑚) of each magnet and decodes
the embedded information.

7 HARDWARE CONFIGURATION
7.1 Sensing Array
Sensor setup and circuit design. For the magnetometer,
we choose MLX90393 [14], a low-cost (i.e., <$2 each) and
energy-efficient triaxial magnetometer with a wide sensing
range of 5 — 50𝑚𝑇 . We use a compact Bluetooth Low Energy
(BLE) module MDBT42Q-512KV2 [4] as the microcontroller.
This module is integrated with a nRF52832 system-on-chip
(SoC) that facilitates power-efficient data processing and
communication. The microcontroller communicates with
the magnetometers via SPI protocol [1] at a clock frequency
of 2 MHz. The measured data can be transmitted with a
wired connection or a BLE channel, depending on the specific
requirements.
Sensor array construction. We have implemented two
sensor array prototypes for two robotic systems: a robot car
and a miniature car. The robot car’s sensor array measures
16.9𝑐𝑚 × 1.2𝑐𝑚 and comprises 9 magnetometers spaced 2
cm apart. For the miniature platform, we built a compact
sensor array consisting of threemagnetometers with an inter-
sensor distance of only 0.8 cm. Its dimension is 2.5𝑐𝑚×1.2𝑐𝑚.
The costs (including a microcontroller, magnetometers, and
manufacturing costs) of these two sensor arrays, are less
than $25 and $12, respectively.

7.2 Tag Fabrication
For the disc magnet, we use Neodymium (NdFeB) magnets
[3] due to their high magnetic strength and low cost. We
determined two specific configurations of magnets for our
testing platforms. The magnet for the robot car has a diame-
ter of 2 mm and a height of 0.5 mm. For the miniature car,
the diameter of the magnet is 1 mm, and the height is 0.5 mm.
The tiny magnet is extremely low-cost, costing < $0.015.

To fabricate the tag, we propose a four-step process illus-
trated in Fig. 16, allowing users to fabricate with minimal
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Figure 17: Different failure cases of a Polaris tag.

effort. First, we label the N/S polarity of each magnet with
an ultra-fine marker. Note that the magnet manufacturer can
perform the labeling process during production. We use an
ultra-thin and durable PVC plane with a thickness of 0.2 mm
as the substrate. Then, we draw the K-order tag layout with
the ultra-fine marker on this substrate. Finally, we place each
magnet at the intersection point on the plane using plastic
tweezers and fix it with an industrial-grade glue.

7.3 Robustness of Polaris Tag
Real-world disturbances. Real-world disturbances include
non-magnetic and ferromagnetic materials. Magnetic fields
can penetrate non-magnetic materials, ensuring reliable de-
tection of Polaris tags in everyday scenarios such as homes.
In harsh scenarios such as factories, accumulated ferromag-
netic debris (e.g., iron filings) on the ground may distort the
magnetic field. To address this issue, the peak detection and
polarity alignment algorithm (Sec. 6.2) effectively eliminates
the disturbance using reliable derivative signals. The exper-
imental results (Sec. 8.3.6) also demonstrate Polaris can
accurately interpret a tag under various disturbances.
Fabrication defects. During placement, the polarity ori-
entation of a small magnet might not align well with the
desired orientation. For example, Fig. 17(A) shows a desired
tag configuration. Fig. 17(B) shows an inner magnet has an
incorrect orientation due to fabrication defects. This error
may incur errors in decoding the tag ID, e.g., decoding the
desired tag ID to a neighboring tag ID, when using a fine-
grained polarity orientation for encoding. Thanks to the
encoding capability enabled by MOSK, we can mitigate this
issue by sustaining the minimum Hamming distance, i.e., the
minimum distance between the encoding bits of two tags.
Damaged tags. Passive magnets are made of rigid ferromag-
netic metal that can survive high pressure. For example, a
neodymium magnet has a compressive and tensile strength
of 137,800 psi and 80 MPa [15], respectively. However, in
extreme conditions, it is possible that the magnet(s) of a
Polaris tag is damaged. We now analyze the robustness
of our tag under such extreme cases. There are two types
of failure cases based on the position of the magnet in the
2D tag. In Fig. 17(C), one magnet of the position-detection
pattern is damaged. This could incur a failure of the tag re-
construction process in Sec. 6.2, which will be reported to
the robot. Fig. 17(D) shows a magnet damaged in the remain-
ing intersections. This damage leads to failure detection of

Figure 18: The experiment setup: (A) shows the settings
for the robot car; (B) represents the testing scenario of
the miniature car.

the magnet’s polarity orientation and position, resulting in
missing bits. To tackle this issue, redundant magnets can
be placed at the idle intersections of the 2D tag using the
existing forward error correction (FEC) schemes [27], e.g.,
the Reed-Solomon code [64] used in QR codes. In this case,
Polaris only employs the polarity orientation of each mag-
net to encode data. The intersection points are preserved for
redundancy requirements. The error correction level depends
on the number of intersection points, which is related to the
minimal inter-magnet distance (Sec. 5). A small inter-magnet
distance allows the Polaris tag to achieve high-level error
correction with a compact layout. Our experimental results
in Sec. 8.4 indicate that Polaris can decode a tiny tag with
an inter-magnet distance of only 1.6 cm, demonstrating the
potential for integrating existing FEC schemes into our tag.

8 EVALUATION
8.1 Experimental Settings
we evaluate Polaris with two representative ground robots
— a robot car and a miniature car — as shown in Fig. 18. The
robot car has a dimension of 24 cm × 19 cm, a typical size
for robots such as vacuum cleaners (e.g., Roomba), house-
hold robots (e.g., Amazon Astro), and warehouse robots.
We integrate Polaris into the car’s operating system, i.e.,
Ubuntu 20.04. The default configuration of the testing tag is
{𝐾=3,𝑀=5, 𝑃=8, 𝑑=4 cm}, and each magnet’s default orienta-
tion is 0◦. We first evaluate the impact of varying headings.
Then, we assess Polaris’ robustness and high encoding ca-
pability while varying the polarity orientation, tag density,
and template sizes. To demonstrate the usability and practi-
cality of Polaris, we evaluate its performance under vari-
ous real-world noises and build an end-to-end (e2e) system
that controls the robot’s movement trajectory. We demon-
strate Polaris’ low-power and compact features with the
miniature car scenario. First, we show that Polaris’ sensing
pipeline can be integrated with low-power nodes such as
ESP32 S3 chip. Then, we validate Polaris’ efficacy of de-
tecting a tiny tag. Specifically, we build a thumbnail-sized
tag, i.e., 1.6 × 1.6𝑐𝑚2, consisting of three magnets. We also
measure the power consumption of Polaris, including the
hardware front end and computational components.
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Figure 19: The impact of varying heading angles.

8.2 Evaluation Metrics
Information decoding performance is evaluated by measur-
ing the bit error ratio (BER). To assess the posture estimation
performance, we analyze the error of the measured heading
angle relative to the ground truth. To evaluate the magnet lo-
calization performance, we measure the mean Euclidean dis-
tance between the reconstructed coordinate and the ground-
truth coordinate of a Polaris tag. For example, for a tag
consisting of 𝑀 magnets, the ground-truth coordinate of
each magnet is denoted as (𝑥𝑔

𝑖
, 𝑦
𝑔

𝑖
), and the reconstructed

coordinate of each magnet is (𝑥𝑚𝑖 , 𝑦𝑚𝑖 ). The mean Euclidean
distance can be derived as:

1
𝑀

𝑀∑︁
𝑖=1

√︃
(𝑥𝑔
𝑖
− 𝑥𝑚

𝑖
)2 + (𝑦𝑔

𝑖
− 𝑦𝑚

𝑖
)2 . (4)

8.3 Robot Car
8.3.1 Implementation. As shown in Fig. 18(A), the testing
tag is positioned on a grid paper with a 1 mm granularity.
This tag can encode 18 bits using Eq. (1). The sensor array in
Sec. 7 is mounted at the front of the robot car with a ground
clearance of 10 mm. The sampling rate is 100 Hz. The car
moves autonomously with a speed of 10 cm/s, controlled by
its onboard system. The sensing pipeline is integrated into
the onboard computingmodule, an NVIDIA Jetson Nano 4GB
development board [13]. The sensor readings are transmitted
to the computing unit via a flexible printed circuit (FPC)
wire. The polarity alignment process uses a template set
with 36 × 5 = 180 templates, with each template contains 80
data points. With our efficient C architecture, the total time
delay of the sensing pipeline is less than 50 ms, ensuring the
robot car operates in real time.

8.3.2 Varying headings. Polaris is required to accurately
estimate the posture and decode embedded information with
arbitrarily changing headings. Thus, we test the detection
performance with the default tag under five different heading
angles, i.e., 0◦, 45◦,90◦, 135◦, and 180◦. For each heading, the
robot car moves over the tag in a straight path controlled by
the onboard system and repeats this process 10 times.

The results indicate there were no missed detections of
eachmagnet under each heading anglewith our peak-detection
algorithm. Fig. 19(a) shows the localization performance of
each magnet in the tag. The average positioning error is 1.93
mm, 2.33 mm, 2.07 mm, 2.49 mm, and 2.01 mm, respectively.
Fig. 19(b) shows the estimation performance of the head-
ing angle. Specifically, the average angular errors are 1.35◦,
1.25◦, 1.35◦, 1.39◦, and 1.07◦, respectively. The information
decoding performance is shown in Fig. 19(c). The maximum
BER is 0.011, resulting in a total error of only 2 bits during
interpreting the tag across 10 experiments. These results
demonstrate the accuracy and robustness of Polaris for
interpreting the magnetic tag under various headings.

8.3.3 Varying polarity orientations. We assess the impact
of different polarity orientations. Specifically, we set the po-
larity orientation of each magnet in the tag as 0◦, 45◦, 90◦,
135◦, and 180◦, respectively. The robot car moves over this
tag at 0◦ and repeats the process 10 times. The [Mean, STD]
of the angular error is (1.50◦, 0.84◦). The [Mean, STD] of the
positional error is (1.98 mm, 0.65 mm). The BER of infor-
mation decoding is 0.006. These results indicate Polaris’
performance is agnostic to the polarity orientations of each
magnet.

8.3.4 Varying tag density. We now assess the detection per-
formance of Polaris decoding a complex tag layout with a
higher magnet density. Specifically, we increased the num-
ber of magnets in the default tag to eight, the maximum
number of a third-order tag, thus enabling 24-bit encoding.
The robot car moves over this tag with a heading angle of
0◦ and repeats the process ten times. The average angular
and positional error is 1.28◦ and 2.27 mm, respectively. The
BER is only 0.0125, remaining consistent with the result of
the defaulting tag. The results indicate the configuration of
inter-magnet distance ensures the specified sensing accuracy
given high magnet density.

8.3.5 Varying template sizes. A fine-grained template can
improve the alignment accuracy of 𝜃𝑚𝑠 and thus distinguishes
more polarity orientations in MOSK modulation (Sec. 6.2.2).
However, a finer-grained template may incur more time. For
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Figure 20: The impact of template size.

Figure 21: The performance of Polaris under real-
world interference. Units of angular and localization
errors are ◦ and𝑚𝑚, respectively.

template construction, we consider three angular resolutions:
1◦, 10◦, and 20◦. The corresponding template sizes are 1,800,
180, and 90, respectively. At each resolution, the robot car
detects the default tag at 0◦ and repeats the process 10 times.
As shown in Fig. 20, posture estimation and information

decoding performance decrease with the angular resolution.
Specifically, Fig. 20(a) shows Polaris achieves a < 2𝑚𝑚
localization error. Even at a resolution of 20◦, the positioning
error remains below 3 mm. As shown in Fig. 20(b), at 20-
degree resolution, Polaris achieves the maximum angular
error within 2◦. Fig. 20(c) shows that the BER increases with
the angular granularity. Polaris can reliably decode the tag
with a < 0.03 BER at a 20-◦ resolution. At 1◦ resolution, the
BER decreases to zero. The alignment process at 1◦, 10◦, and
20◦ requires 350.2 ms, 29.4 ms, and 16.7 ms, respectively.

8.3.6 Real-world magnetic interference and debris. We now
evaluate Polaris’ resilience against real-world magnetic in-
terference and magnetic debris that will introduce signal
noise into the systems. As shown in Fig. 21, we emulate
seven exemplary signal noise sources in three practical sce-
narios: household objects (electric device, metal chair and
umbrella stand), heavy-duty factories (iron oxide and iron
debris), and harsh environments (dirt and muddy water). The
robot car moved over the tag in a straight path and repeated
the process 5 times. The average BER during the experiments
is 0.013. The angular and localization errors are shown in
Fig. 21, demonstrating no significant performance degrada-
tion with these real-world marker interference sources.

8.3.7 Orientation calibration by Polaris. We developed an
end-to-end (e2e) system of Polaris and installed it in the
robot car as shown in Fig. 22(A). Two Polaris tags with
consecutive IDs are placed 1 m apart, creating a straight-line
path. Upon detecting tag “1”, the e2e system decodes the

Figure 22: End-to-end experiment. (A) the experimen-
tal setup and (B) a trajectory calibrated by Polariswith
iron filings.

Figure 23: Results of trajectory calibration. (a) w/o in-
terference (iron filings); (b) w/ interference.

embedded information “Start” and estimates the robot car’s
orientation in real time. Then, it performs orientation cali-
bration, i.e., to control the car to return to the straight path
relative to tag “1”. Finally, the car will stop when detecting
tag “2” embedded with “Stop”. Fig. 22(B) shows an example
of the above orientation calibration process.
We assessed our e2e system using three different head-

ing angles: 30◦, 45◦, and 60◦. To collect the ground truth,
we affixed a camera to a tripod for each heading to capture
video at UHD resolution and 30 FPS. We recorded a video to
track the robot car’s position on the graph paper. We first
tested it in an ideal scenario, i.e., no disturbances/occlusion
to the two tags. Polaris successfully interpreted the tag
and calibrated the car’s posture during all experiments. The
reconstructed trajectories are shown in Fig. 23(a). Then, we
evaluated the system’s efficiency in challenging scenarios
by covering both tags with iron filings (Fig. 22(B)). Fig. 23(b)
show that Polaris can interpret the tag and accurately cal-
ibrate the trajectory in all experiments, even with the iron
filings, indicating that Polaris can serve as a reliable com-
plement to existing visual fiducials.
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8.4 Miniature Car
8.4.1 Implementation. we implemented a 1.6 × 1.6𝑐𝑚2 tag
with three disc magnets (Fig. 18(B)). This tiny tag can encode
9 bits with 8 polarity configurations according to Eq. (1). The
compact sensor array (1.2 × 2.5𝑐𝑚2) is installed at the front
of the miniature car and operates at a sample rate of 17 Hz.

8.4.2 Practicability of Polaris. We integrated the sens-
ing pipeline into an ESP32-S3-WROOM-1-N16R8 [5], a low-
power MCU-based SoC, with ESP-IDF programming guide
[11]. This MCU has an SRAM of 8 MB and a clock frequency
of 240 MHz. The real-time sensing data is transmitted to
the MCU via BLE transmission. For the miniature platform,
the template size is 18 × 1 = 18. Each template has 15 data
points. The template alignment and magnet localization pro-
cess took 0.15 s and 0.60 s on average. That is, detecting each
magnet only takes 0.75 s in total. Note that the miniature
robots usually operate at low speed when performing critical
tasks in confined spaces. For example, a miniature in-pipe in-
spection robot has a speed of <1 mm/s to ensure the damage
detection accuracy [53, 57].
For experimentation purposes, we manually moved the

car on a straight-line by aligning the car with a ruler, with
a heading angle of 0◦ and repeated the process 10 times.
The average velocity is controlled to be about 5 mm/s. This
reconstruction process was consistent with the robot car’s,
and we used the ESP32 chip as the computing module.
The BER result is 0.033, with the number of polarity ori-

entations set to 8. The (mean, STD) pair of the Euclidean
distance between the measured and ground truth coordi-
nates is (0.58 mm, 0.08 mm). That is, Polaris can achieve a
sub-millimeter level localization accuracy for the miniature
robot. For the angle estimation, the (mean, STD) pair of the
estimation result is (0.997◦, 0.125◦), again showing Polaris’
practicability as a fiducial system for miniature robots.

8.5 Overhead analysis
The energy consumption of Polaris is critical for the battery-
powered robots. To evaluate Polaris’ energy consumption,
we analyzed each module, including the sensing hardware
and the computing unit. We profile the energy consumption
for the sensor array by measuring the battery supply voltage
and current. Specifically, the sensor array on the robot car
consumed 77.22 mW. For the miniature car, the sensor array
with three magnetometers consumed only 25.08 mW. We
also measured a compact solar panel of 30 mm by 25 mm in
an outdoor environment under 100,000 lux illuminance. The
panel produces 85 mW of power, demonstrating the feasibil-
ity of Polaris on a solar-powered miniature platform.
For the computing unit, we profile it on the ESP32 chip

using a power meter. We calculated the overhead of the com-
puting unit by subtracting the idle power consumption and

repeating this process 5 times. The average power consump-
tion is only 2.8 mW, corroborating the energy efficiency of
our template matching scheme.

9 DISCUSSION
Tackling miss detection. For small robots, detecting only
part of a Polaris tag can miss bits and yield inaccurate
posture estimation. To address this problem, additional re-
dundant tags can be used as they are compact and cost-
effective (Sec. 5). The experimental results in Sec. 8.4 show
that Polaris can accurately decode tagswith an inter-magnet
distance of only 1.6 cm, demonstrating its efficacy in de-
tecting compact tags. Note that Polaris can achieve high
encoding capacity with small tags by employing a higher
orientation-shiftingmodulation, e.g., 20-MOSK. The improved
order of modulation does not require extra costs of hardware
or magnets. Specifically, it requires a template with more
synthesized trajectories to distinguish more polarity orien-
tations (Sec. 6.2.2). With our efficient C-based architecture,
this can be implemented effectively, e.g., taking 350 ms for
20-MOSK as elaborated in Sec. 8.3.5.
Improving Polaris. Polaris complements existing ground-
mounted visual fiducials in challenging scenarios where cam-
eras fail to detect them even at close ranges (Sec. 2.1). To
handle higher speeds, one can increase the magnetometer’s
sampling rate to capture the magnetic field created by the
passive magnet. To extend the sensing range, stronger pas-
sive magnets and/or more sensitive magnetometers can be
used. To minimize the sensing latency, Polaris can reduce
tag sizes and employ higher detecting speeds with an in-
creased sampling rate. For tag fabrication, the PVC substrate
is durable and resistant to deformation. One can further
enhance the durability by placing the magnet on rigid, non-
magnetic substrates.

10 CONCLUSION
We have presented the first vision-free fiducial marker sys-
tem, Polaris, which enables posture calibration and sim-
ple message communication with a new magnetic sensing
pipeline and tag design methods. Compared to the exist-
ing fiducial systems that rely on imagery tags and cameras,
Polaris offers several feature, such as robustness, energy ef-
ficiency, and privacy protection. Therefore, Polaris demon-
strates unique advantages in preparing future robotic sys-
tems for challenging tasks.
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